11 research outputs found

    Clonality and Micro-Diversity of a Nationwide Spreading Genotype of Mycobacterium tuberculosis in Japan

    Get PDF
    Mycobacterium tuberculosis transmission routes can be estimated from genotypic analysis of clinical isolates from patients. In Japan, still a middle-incidence country of TB, a unique genotype strain designated as \u27M-strain\u27 has been isolated nationwide recently. To ascertain the history of the wide spread of the strain, 10 clinical isolates from different areas were subjected to genome-wide analysis based on deep sequencers. Results show that all isolates possessed common mutations to those of referential strains. The greatest number of accumulated single nucleotide variants (SNVs) from the oldest coalescence was 13 nucleotides, indicating high clonality of these isolates. When an SNV common to the isolates was used as a surrogate marker of the clone, authentic clonal isolates with variation in a reliable subset of variable number of tandem repeat (VNTR) genotyping method can be selected successfully from clinical isolates populations of M. tuberculosis. When the authentic clones can also be assigned to sub-clonal groups by SNVs derived from the genomic comparison, they are classifiable into three sub-clonal groups with a bias of geographical origins. Feedback from genomic analysis of clinical isolates of M. tuberculosis to genotypicmarkers will be an efficient strategy for the big data in various settings for public health actions against TB

    WAPing out pathogens and disease in the mucosa: roles for SLPI and Trappin-2

    Full text link
    The interface between the external environment and the body’s internal structures is defined by the mucosal tissue and the viscous lining fluid that is responsible for maintaining its integrity and protecting internal structures from damage or infection. Human mucosal fluids include seminal fluid, cervical mucus, bronchial and nasal secretions and tears whose composition is particularly complicated. This review will focus on just two related molecules that are present in the mucosal lining fluid, namely, trappin-2 and secretory leucocyte protease inhibitor (SLPI), that are responsible for many of the homeostatic and host defence functions of these uniquely situated viscous sols. This review will focus on our increasing understanding of these two molecules from a simple role as local antibiotics that respond to pathogen invasion to major orchestrators of cellular interplays, host defence mechanisms and immune homeostasis
    corecore