22 research outputs found
The benefits of very low earth orbit for earth observation missions
Very low Earth orbits (VLEO), typically classified as orbits below approximately 450 km in altitude, have the potential to provide significant benefits to spacecraft over those that operate in higher altitude orbits. This paper provides a comprehensive review and analysis of these benefits to spacecraft operations in VLEO, with parametric investigation of those which apply specifically to Earth observation missions. The most significant benefit for optical imaging systems is that a reduction in orbital altitude improves spatial resolution for a similar payload specification. Alternatively mass and volume savings can be made whilst maintaining a given performance. Similarly, for radar and lidar systems, the signal-to-noise ratio can be improved. Additional benefits include improved geospatial position accuracy, improvements in communications link-budgets, and greater launch vehicle insertion capability. The collision risk with orbital debris and radiation environment can be shown to be improved in lower altitude orbits, whilst compliance with IADC guidelines for spacecraft post-mission lifetime and deorbit is also assisted. Finally, VLEO offers opportunities to exploit novel atmosphere-breathing electric propulsion systems and aerodynamic attitude and orbit control methods. However, key challenges associated with our understanding of the lower thermosphere, aerodynamic drag, the requirement to provide a meaningful orbital lifetime whilst minimising spacecraft mass and complexity, and atomic oxygen erosion still require further research. Given the scope for significant commercial, societal, and environmental impact which can be realised with higher performing Earth observation platforms, renewed research efforts to address the challenges associated with VLEO operations are required
A review of gas-surface interaction models for orbital aerodynamics applications
Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications
Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis
Background: Patellofemoral pain is considered one of the most common forms of knee pain, affecting adults, adolescents, and physically active populations. Inconsistencies in reported incidence and prevalence exist and in relation to the allocation of healthcare and research funding, there is a clear need to accurately understand the epidemiology of patellofemoral pain.
Methods: An electronic database search was conducted, as well as grey literature databases, from inception to June 2017. Two authors independently selected studies, extracted data and appraised methodological quality. If heterogeneous, data were analysed descriptively. Where studies were homogeneous, data were pooled through a meta-analysis.
Results: 23 studies were included. Annual prevalence for patellofemoral pain in the general population was reported as 22.7%, and adolescents as 28.9%. Incidence rates in military recruits ranged from 9.7 – 571.4/1,000 person-years, amateur runners in the general population at 1080.5/1,000 person-years and adolescents amateur athletes 5.1% - 14.9% over 1 season. One study reported point prevalence within military populations as 13.5%. The pooled estimate for point prevalence in adolescents was 7.2% (95% Confidence Interval: 6.3% - 8.3%), and in female only adolescent athletes was 22.7% (95% Confidence Interval 17.4% - 28.0%).
Conclusion: This review demonstrates high incidence and prevalence levels for patellofemoral pain. Within the context of this, and poor long term prognosis and high disability levels, PFP should be an urgent research priority
Guillain-Barre Syndrome and Adjuvanted Pandemic Influenza A (H1N1) 2009 Vaccines: A Multinational Self-Controlled Case Series in Europe
Background: The risk of Guillain-Barre syndrome (GBS) following the United States' 1976 swine flu vaccination campaign in the USA led to enhanced active surveillance during the pandemic influenza (A(H1N1)pdm09) immunization campaign. This study aimed to estimate the risk of GBS following influenza A(H1N1) pdm09 vaccination. Methods: A self-controlled case series (SCCS) analysis was performed in Denmark, Finland, France, Netherlands, Norway, Sweden, and the United Kingdom. Information was collected according to a common protocol and standardised procedures. Cases classified at levels 1-4a of the Brighton Collaboration case definition were included. The risk window was 42 days starting the day after vaccination. Conditional Poisson regression and pooled random effects models estimated adjusted relative incidences (RI). Pseudo likelihood and vaccinated-only methods addressed the potential contraindication for vaccination following GBS. Results: Three hundred and three (303) GBS and Miller Fisher syndrome cases were included. Ninety-nine (99) were exposed to A(H1N1) pdm09 vaccination, which was most frequently adjuvanted (Pandemrix and Focetria). The unadjusted pooled RI for A(H1N1) pdm09 vaccination and GBS was 3.5 (95% Confidence Interval (CI): 2.2-5.5), based on all countries. This lowered to 2.0 (95% CI: 1.2-3.1) after adjustment for calendartime and to 1.9 (95% CI: 1.1-3.2) when we accounted for contra-indications. In a subset (Netherlands, Norway, and United Kingdom) we further adjusted for other confounders and there the RI decreased from 1.7 (adjusted for calendar month) to 1.4 (95% CI: 0.7-2.8), which is the main finding. Conclusion: This study illustrates the potential of conducting European collaborative vaccine safety studies. The main, fully adjusted analysis, showed that the RI of GBS was not significantly elevated after influenza A(H1N1) pdm09 vaccination (RI = 1.4 (95% CI: 0.7-2.8). Based on the upper limits of the pooled estimate we can rule out with 95% certainty that the number of excess GBS cases after influenza A(H1N1) pdm09 vaccination would be more than 3 per million vaccinated
The incidence of narcolepsy in Europe: before, during, and after the influenza A(H1N1)pdm09 pandemic and vaccination campaigns
Contains fulltext :
117810.pdf (publisher's version ) (Closed access)BACKGROUND: In August 2010 reports of a possible association between exposure to AS03 adjuvanted pandemic A(H1N1)pdm09 vaccine and occurrence of narcolepsy in children and adolescents emerged in Sweden and Finland. In response to this signal, the background rates of narcolepsy in Europe were assessed to rapidly provide information for signal verification. METHODS: We used a dynamic retrospective cohort study to assess the narcolepsy diagnosis rates during the period 2000-2010 using large linked automated health care databases in six countries: Denmark, Finland, Italy, the Netherlands, Sweden and the United Kingdom. RESULTS: Overall, 2608 narcolepsy cases were identified in almost 280 million person years (PY) of follow up. The pooled incidence rate was 0.93 (95% CI: 0. 90-0.97) per 100,000 PY. There were peaks between 15 and 30 year of age (women>men) and around 60 years of age. In the age group 5-19 years olds rates were increased after the start of pandemic vaccination compared to the period before the start of campaigns, with rate ratios (RR) of 1.9 (95% CI: 1.1-3.1) in Denmark, 6.4 (95% CI: 4.2-9.7) in Finland and 7.5 (95% CI: 5.2-10.7) in Sweden. Cases verification in the Netherlands had a significant effect on the pattern of incidence over time. CONCLUSIONS: The results of this incidence study provided useful information for signal verification on a population level. The safety signal of increased narcolepsy diagnoses following the start of the pandemic vaccination campaign as observed in Sweden and Finland could be observed with this approach. An increase in narcolepsy diagnoses was not observed in other countries, where vaccination coverage was low in the affected age group, or did not follow influenza A(H1N1)pdm09 vaccination. Patient level analyses in these countries are being conducted to verify the signal in more detail
COVID-19: How has a global pandemic changed manual therapy technique education in chiropractic programs around the world?
Background: Manual therapy is a cornerstone of chiropractic education, whereby students work towards a level of skill and expertise that is regarded as competent to work within the field of chiropractic. Due to the COVID-19 pandemic, chiropractic programs in every region around the world had to make rapid changes to the delivery of manual therapy technique education, however what those changes looked like was unknown.
Aims: The aims of this study were to describe the immediate actions made by chiropractic programs to deliver education for manual therapy techniques and to summarise the experience of academics who teach manual therapy techniques during the initial outbreak of COVID-19 pandemic.
Methods: A qualitative descriptive approach was used to describe the immediate actions made by chiropractic programs to deliver manual therapy technique education during the COVID-19 pandemic. Chiropractic programs were identified from the webpages of the Councils on Chiropractic Education International and the Council on Chiropractic Education – USA. Between May and June 2020, a convenience sample of academics who lead or teach in manual therapy technique in those programs were invited via email to participate in an online survey with open-ended questions. Responses were entered into the NVivo software program and analysed using a reflexive thematic analysis by a qualitative researcher independent to the data collection