784 research outputs found

    Beppo-SAX Observations of Galaxy Clusters

    Get PDF
    The high spatial resolution of the MECS experiment on board Beppo-SAX has encouraged a few scientists, including the author, to perform observations of galaxy clusters. Results from the analysis of the first few observed objects are encouraging. After having reviewed the Beppo-SAX observing program for galaxy clusters and referenced contributions to these proceedings by other authors on the same topic, I present results from the analysis of the Perseus cluster.Comment: 4 pages, 4 Postscript figures included. To appear in the proceedings of the ``Active X-ray Sky: Results from BeppoSAX and Rossi-XTE'

    Self-similarity of temperature profiles in distant galaxy clusters: the quest for a Universal law

    Full text link
    We present the XMM-Newton temperature profiles of 12 bright clusters of galaxies at 0.4<z<0.9, with 5<kT<11 keV. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided in 5 cool-core (CC) and 7 non cool-core (NCC) clusters, by introducing a pseudo-entropy ratio sigma=(T_IN/T_OUT)X(EM_IN/EM_OUT)^-1/3 and defining the objects with sigma<0.6 as CC clusters and those with sigma>=0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latters exhibiting a marginally flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio sigma is detected by fitting a function of both r and sigma, showing an indication that the outer part of the profiles becomes steeper for higher values of sigma (i.e. transitioning towards the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4<z<0.9). A comparison of our high-z sample with intermediate clusters at 0.1<z<0.3, showed how both the CC and NCC clusters temperature profiles have experienced some sort of evolution. This can be due by the fact that higher z clusters are at less advanced stage of their formation and did not have enough time to create a relaxed structure, characterized by a central temperature dip in CC clusters and by flatter profiles in NCC clusters. This is the first time that a systematic study of the temperature profiles of galaxy clusters at z>0.4 has been attempted, as we were able to define the closest possible relation to a Universal law for the temperature profiles of galaxy clusters at 0.1<z<0.9, showing a dependence on both the state of relaxation of the clusters and the redshift.Comment: 14 pages, 8 figures, A&A in press, minor changes (language editing

    Cold fronts in galaxy clusters

    Full text link
    Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.Comment: Accepted for publication in Astronomy & Astrophysics. Version with full resolution figures available at: http://www.iasf-milano.inaf.it/~simona/pub/coldfronts/ghizzardi.pd
    corecore