16 research outputs found

    Three are better than one: plasminogen receptors as cancer theranostic targets.

    Get PDF
    Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors

    Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells

    Get PDF
    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by rapid progression, invasiveness and resistance to treatment. We have previously demonstrated that most PDAC patients have circulating antibodies against the glycolytic enzyme alpha-enolase (ENO1), which correlates with a better response to therapy and survival. ENO1 is a metabolic enzyme, also expressed on the cell surface where it acts as a plasminogen receptor. ENO1 play a crucial role in cell invasion and metastasis by promoting plasminogen activation into plasmin, a serine-protease involved in extracellular matrix degradation. The aim of this study was to investigate the role of ENO1 in PDAC cell invasion. We observed that ENO1 was expressed on the cell surface of most PDAC cell lines. Mouse anti-human ENO1 monoclonal antibodies inhibited plasminogen-dependent invasion of human PDAC cells, and their metastatic spreading in immunosuppressed mice was inhibited. Notably, a single administration of Adeno-Associated Virus (AAV)-expressing cDNA coding for 72/1 anti-ENO1 mAb reduced the number of lung metastases in immunosuppressed mice injected with PDAC cells. Overall, these data indicate that ENO1 is involved in PDAC cell invasion, and that administration of an anti-ENO1 mAb can be exploited as a novel therapeutic option to increase the survival of metastatic PDAC patients

    Vaccination with ENO1 DNA Prolongs Survival of Genetically Engineered Mice with Pancreatic Cancer.

    Get PDF
    BACKGROUND & AIMS:: Pancreatic ductal adenocarcinoma (PDA) is an aggressive tumor, and patients typically present with late-stage disease; rates of 5-year survival after pancreaticoduodenectomy are low. Antibodies against -enolase (ENO1), a glycolytic enzyme, are detected in more than 60% of patients with PDA, and ENO1-specific T cells inhibit the growth of human pancreatic xenograft tumors in mice. We investigated whether an ENO1DNA vaccine elicits anti-tumor immune responses and prolongs survival of mice that spontaneously develop autochthonous, lethal pancreatic carcinomas. METHODS:: We injected and electroporated a plasmid encoding ENO1 (or a control plasmid) into Kras(G12D)/Cre mice (KC) and Kras(G12D)/Trp53 (R172H) /Cre (KPC) mice when they were 4 weeks old (when pancreatic intraepithelial lesions are histologically evident). Anti-tumor humoral and cellular responses were analyzed by histology, immunohistochemistry, ELISAs, flow cytometry, and ELISpot and cytotoxicity assays. Survival was analyzed by Kaplan-Meier analysis. RESULTS:: The ENO1 vaccine induced antibody and a cellular responses and increased survival times by a median 138 days in KC mice and 42 days in KPC mice, compared with mice given the control vector. In histologic analysis, the vaccine appeared to slow tumor progression. The vaccinated mice had increased serum levels of anti-ENO1 immunoglobulin G, which bound the surface of carcinoma cells and induced complement-dependent cytotoxicity. ENO1 vaccination reduced numbers of myeloid-derived suppressor cells and T-regulatory cells, and increased T-helper 1 and 17 responses. CONCLUSIONS:: In a genetic model of pancreatic carcinoma, vaccination with ENO1DNA elicits humoral and cellular immune responses against tumors, delays tumor progression, and significantly extends survival. This vaccination strategy might be developed as a neo-adjuvant therapy for patients with PD

    Immune Landscape of Pituitary Tumors Reveals Association Between Macrophages and Gonadotroph Tumor Invasion

    No full text
    International audienceAbstract Purpose Pituitary neuroendocrine tumors (PitNETs) are frequent intracranial neoplasms that present heterogenic characteristics. Little is known about the immune cell network that exists in PitNETs and its contribution to their aggressive behavior. Methods Here we combined flow cytometry, t-SNE analysis, and histological approaches to define the immune landscape of surgically resected PitNETs. Xenografts of rodent pituitary tumor cells and resected PitNETs were performed in Rag2KO mice, in combination with in vitro analysis aimed at dissecting the role of pituitary tumor-cells in monocyte recruitment. Results We report that gonadotroph PitNETs present an increased CD68+ macrophage signature compared to somatotroph, lactotroph, and corticotroph PitNETs. Transcriptomic and histological characterizations confirmed gonadotroph infiltrating macrophages expressed CD163, MRC-1, ARG1, and CSF1R M2 macrophage markers. Use of growth hormone (GH)3/GH4 somatotroph and LβT2/αT3.1 gonadotroph cells drove THP1 macrophage migration through respective expression of CCL5 or CSF1. Although both LβT2 and GH3 cells recruited F4/80 macrophages following their engraftment in mice, only LβT2 gonadotroph cells showed a capacity for M2-like polarization. Similar observations were performed on patient-derived xenografts from somatotroph and gonadotroph tumors. Analysis of clinical data further demonstrated a significant correlation between the percentage of CD68+ and CD163+ infiltrating macrophages and the invasive character of gonadotroph tumors. Conclusions Gonadotroph tumor drive the recruitment of macrophages and their subsequent polarization to an M2-like phenotype. More importantly, the association between infiltrating CD68+/CD163+ macrophages and the invasiveness of gonadotroph tumors points to macrophage-targeted immunotherapies being a potent strategy to limit the progression of gonadotroph PitNETs
    corecore