583 research outputs found

    Accurate Relativistic Real-Time TDDFT for Valence and Core Attosecond Transient Absorption Spectroscopy

    Get PDF
    Attosecond pump-probe transient absorption spectroscopy (TAS) has opened the possibility to study pure electron dynamics on its natural time scale. However, due to the out-of-equilibrium nature of the process, first-principle theoretical modelling remains a challenging task, specially for heavy elements and/or core excitations where relativistic corrections become imperative, as the spectra contain significant imprints of both scalar and spin-orbit relativistic effects. To alleviate this problem, we formulated a methodology for computing TAS spectrum within the relativistic real-time time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regime. Even though RT simulations using full four-component (4c) method are feasible, they are still computationally expensive, especially for TAS. Therefore, in addition to the 4c approach, we have introduced the atomic mean-field exact two-component (amfX2C) Hamiltonian for RT-TDDFT, which accounts for one- and two-electron picture-change corrections and preserves the accuracy of the parent 4c method but at a fraction of its computational cost. Finally, we apply the amfX2C approach to study valence and near L 2,3 -edge TAS processes of experimentally relevant systems, providing additional physical insights through the lens of non-equilibrium response theory

    Relating vesicle shapes in pyroclasts to eruption styles

    Get PDF
    Vesicles in pyroclasts provide a direct record of conduit conditions during explosive volcanic eruptions. Although their numbers and sizes are used routinely to infer aspects of eruption dynamics, vesicle shape remains an underutilized parameter. We have quantified vesicle shapes in pyroclasts from fall deposits of seven explosive eruptions of different styles, using the dimensionless shape factor , a measure of the degree of complexity of the bounding surface of an object. For each of the seven eruptions, we have also estimated the capillary number, Ca, from the magma expansion velocity through coupled diffusive bubble growth and conduit flow modeling. We find that Ω is smaller for eruptions with Ca 1 than for eruptions with Ca 1. Consistent with previous studies, we interpret these results as an expression of the relative importance of structural changes during magma decompression and bubble growth, such as coalescence and shape relaxation of bubbles by capillary stresses. Among the samples analyzed, Strombolian and Hawaiian fire-fountain eruptions have Ca 1, in contrast to Vulcanian, Plinian, and ultraplinian eruptions. Interestingly, the basaltic Plinian eruptions of Tarawera volcano, New Zealand in 1886 and Mt. Etna, Italy in 122 BC, for which the cause of intense explosive activity has been controversial, are also characterized by Ca 1 and larger values of Ω than Strombolian and Hawaiian style (fire fountain) eruptions. We interpret this to be the consequence of syn-eruptive magma crystallization, resulting in high magma viscosity and reduced rates of bubble growth. Our model results indicate that during these basaltic Plinian eruptions, buildup of bubble overpressure resulted in brittle magma fragmentation.National Science Foundation EAR-1019872National Science Foundation EAR-081033

    Parallel software tools at Langley Research Center

    Get PDF
    This document gives a brief overview of parallel software tools available on the Intel iPSC/860 parallel computer at Langley Research Center. It is intended to provide a source of information that is somewhat more concise than vendor-supplied material on the purpose and use of various tools. Each of the chapters on tools is organized in a similar manner covering an overview of the functionality, access information, how to effectively use the tool, observations about the tool and how it compares to similar software, known problems or shortfalls with the software, and reference documentation. It is primarily intended for users of the iPSC/860 at Langley Research Center and is appropriate for both the experienced and novice user

    Droplet orthogonal impact on nonuniform wettability surfaces

    Get PDF
    The vast majority of prior studies on droplet impact have focused on collisions of liquid droplets with spatially homogeneous (i.e., uniform-wettability) surfaces. But in recent years, there has been growing interest on droplet impact on nonuniform wettability surfaces, which are more relevant in practice. This paper presents first an experimental study of axisymmetric droplet impact on wettability-patterned surfaces. The experiments feature millimeter-sized water droplets impacting centrally with on a flat surface that has a circular region of wettability (Area 1) surrounded by a region of wettability (Area 2), where (i.e., outer domain is less wettable than the inner one). Depending upon the droplet momentum at impact, the experiments reveal the existence of three possible regimes of axisymmetric spreading, namely (I) interior (only within Area 1) spreading, (II) contact-line entrapment at the periphery of Area 1, and (III) exterior (extending into Area 2) spreading. We present an analysis based on energetic principles for , and further extend it for cases where (i.e., the outer domain is more wettable than the inner one). The experimental observations are consistent with the scaling and predictions of the analytical model, thus outlining a strategy for predicting droplet impact behavior for more complex wettability patterns

    INFOPHARE: Newsletter of the Phare Information Office. July 1995 Issue 8.

    Get PDF
    We study the fundamental problem of learning the parameters of a high-dimensional Gaussian in the presence of noise | where an "-fraction of our samples were chosen by an adversary. We give robust estimators that achieve estimation error O(ϵ) in the total variation distance, which is optimal up to a universal constant that is independent of the dimension. In the case where just the mean is unknown, our robustness guarantee is optimal up to a factor of p 2 and the running time is polynomial in d and 1/ϵ. When both the mean and covariance are unknown, the running time is polynomial in d and quasipolynomial in 1/ϵ. Moreover all of our algorithms require only a polynomial number of samples. Our work shows that the same sorts of error guarantees that were established over fifty years ago in the one-dimensional setting can also be achieved by efficient algorithms in high-dimensional settings
    corecore