15 research outputs found

    XploreNAS: Explore Adversarially Robust & Hardware-efficient Neural Architectures for Non-ideal Xbars

    Full text link
    Compute In-Memory platforms such as memristive crossbars are gaining focus as they facilitate acceleration of Deep Neural Networks (DNNs) with high area and compute-efficiencies. However, the intrinsic non-idealities associated with the analog nature of computing in crossbars limits the performance of the deployed DNNs. Furthermore, DNNs are shown to be vulnerable to adversarial attacks leading to severe security threats in their large-scale deployment. Thus, finding adversarially robust DNN architectures for non-ideal crossbars is critical to the safe and secure deployment of DNNs on the edge. This work proposes a two-phase algorithm-hardware co-optimization approach called XploreNAS that searches for hardware-efficient & adversarially robust neural architectures for non-ideal crossbar platforms. We use the one-shot Neural Architecture Search (NAS) approach to train a large Supernet with crossbar-awareness and sample adversarially robust Subnets therefrom, maintaining competitive hardware-efficiency. Our experiments on crossbars with benchmark datasets (SVHN, CIFAR10 & CIFAR100) show upto ~8-16% improvement in the adversarial robustness of the searched Subnets against a baseline ResNet-18 model subjected to crossbar-aware adversarial training. We benchmark our robust Subnets for Energy-Delay-Area-Products (EDAPs) using the Neurosim tool and find that with additional hardware-efficiency driven optimizations, the Subnets attain ~1.5-1.6x lower EDAPs than ResNet-18 baseline.Comment: 16 pages, 8 figures, 2 table

    HyDe: A Hybrid PCM/FeFET/SRAM Device-search for Optimizing Area and Energy-efficiencies in Analog IMC Platforms

    Full text link
    Today, there are a plethora of In-Memory Computing (IMC) devices- SRAMs, PCMs & FeFETs, that emulate convolutions on crossbar-arrays with high throughput. Each IMC device offers its own pros & cons during inference of Deep Neural Networks (DNNs) on crossbars in terms of area overhead, programming energy and non-idealities. A design-space exploration is, therefore, imperative to derive a hybrid-device architecture optimized for accurate DNN inference under the impact of non-idealities from multiple devices, while maintaining competitive area & energy-efficiencies. We propose a two-phase search framework (HyDe) that exploits the best of all worlds offered by multiple devices to determine an optimal hybrid-device architecture for a given DNN topology. Our hybrid models achieve upto 2.30-2.74x higher TOPS/mm^2 at 22-26% higher energy-efficiencies than baseline homogeneous models for a VGG16 DNN topology. We further propose a feasible implementation of the HyDe-derived hybrid-device architectures in the 2.5D design space using chiplets to reduce design effort and cost in the hardware fabrication involving multiple technology processes.Comment: Accepted to IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS

    XPert: Peripheral Circuit & Neural Architecture Co-search for Area and Energy-efficient Xbar-based Computing

    Full text link
    The hardware-efficiency and accuracy of Deep Neural Networks (DNNs) implemented on In-memory Computing (IMC) architectures primarily depend on the DNN architecture and the peripheral circuit parameters. It is therefore essential to holistically co-search the network and peripheral parameters to achieve optimal performance. To this end, we propose XPert, which co-searches network architecture in tandem with peripheral parameters such as the type and precision of analog-to-digital converters, crossbar column sharing and the layer-specific input precision using an optimization-based design space exploration. Compared to VGG16 baselines, XPert achieves 10.24x (4.7x) lower EDAP, 1.72x (1.62x) higher TOPS/W,1.93x (3x) higher TOPS/mm2 at 92.46% (56.7%) accuracy for CIFAR10 (TinyImagenet) datasets. The code for this paper is available at https://github.com/Intelligent-Computing-Lab-Yale/XPert.Comment: Accepted to Design and Automation Conference (DAC

    MINT: Multiplier-less Integer Quantization for Spiking Neural Networks

    Full text link
    We propose Multiplier-less INTeger (MINT) quantization, an efficient uniform quantization scheme for the weights and membrane potentials in spiking neural networks (SNNs). Unlike prior SNN quantization works, MINT quantizes the memory-hungry membrane potentials to extremely low precision (2-bit) to significantly reduce the total memory footprint. Additionally, MINT quantization shares the quantization scaling factor between the weights and membrane potentials, eliminating the need for multipliers that are necessary for vanilla uniform quantization. Experimental results demonstrate that our proposed method achieves accuracy that matches the full-precision models and other state-of-the-art SNN quantization works while outperforming them on total memory footprint and hardware cost at deployment. For instance, 2-bit MINT VGG-16 achieves 90.6% accuracy on CIFAR-10 with approximately 93.8% reduction in total memory footprint from the full-precision model; meanwhile, it reduces 90% computation energy compared to the vanilla uniform quantization at deployment.Comment: 6 pages. Accepted to 29th Asia and South Pacific Design Automation Conference (ASP-DAC 2024

    Do We Really Need a Large Number of Visual Prompts?

    Full text link
    Due to increasing interest in adapting models on resource-constrained edges, parameter-efficient transfer learning has been widely explored. Among various methods, Visual Prompt Tuning (VPT), prepending learnable prompts to input space, shows competitive fine-tuning performance compared to training of full network parameters. However, VPT increases the number of input tokens, resulting in additional computational overhead. In this paper, we analyze the impact of the number of prompts on fine-tuning performance and self-attention operation in a vision transformer architecture. Through theoretical and empirical analysis we show that adding more prompts does not lead to linear performance improvement. Further, we propose a Prompt Condensation (PC) technique that aims to prevent performance degradation from using a small number of prompts. We validate our methods on FGVC and VTAB-1k tasks and show that our approach reduces the number of prompts by ~70% while maintaining accuracy

    Input-Aware Dynamic Timestep Spiking Neural Networks for Efficient In-Memory Computing

    Full text link
    Spiking Neural Networks (SNNs) have recently attracted widespread research interest as an efficient alternative to traditional Artificial Neural Networks (ANNs) because of their capability to process sparse and binary spike information and avoid expensive multiplication operations. Although the efficiency of SNNs can be realized on the In-Memory Computing (IMC) architecture, we show that the energy cost and latency of SNNs scale linearly with the number of timesteps used on IMC hardware. Therefore, in order to maximize the efficiency of SNNs, we propose input-aware Dynamic Timestep SNN (DT-SNN), a novel algorithmic solution to dynamically determine the number of timesteps during inference on an input-dependent basis. By calculating the entropy of the accumulated output after each timestep, we can compare it to a predefined threshold and decide if the information processed at the current timestep is sufficient for a confident prediction. We deploy DT-SNN on an IMC architecture and show that it incurs negligible computational overhead. We demonstrate that our method only uses 1.46 average timesteps to achieve the accuracy of a 4-timestep static SNN while reducing the energy-delay-product by 80%.Comment: Published at Design & Automation Conferences (DAC) 202

    Sharing Leaky-Integrate-and-Fire Neurons for Memory-Efficient Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have gained increasing attention as energy-efficient neural networks owing to their binary and asynchronous computation. However, their non-linear activation, that is Leaky-Integrate-and-Fire (LIF) neuron, requires additional memory to store a membrane voltage to capture the temporal dynamics of spikes. Although the required memory cost for LIF neurons significantly increases as the input dimension goes larger, a technique to reduce memory for LIF neurons has not been explored so far. To address this, we propose a simple and effective solution, EfficientLIF-Net, which shares the LIF neurons across different layers and channels. Our EfficientLIF-Net achieves comparable accuracy with the standard SNNs while bringing up to ~4.3X forward memory efficiency and ~21.9X backward memory efficiency for LIF neurons. We conduct experiments on various datasets including CIFAR10, CIFAR100, TinyImageNet, ImageNet-100, and N-Caltech101. Furthermore, we show that our approach also offers advantages on Human Activity Recognition (HAR) datasets, which heavily rely on temporal information
    corecore