7 research outputs found

    Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced Ischemia

    No full text
    The existence of niches of stem cells residence in the ventricular–subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration. In this study, we explored the neuroprotective activity of the recombinant analog of Nephila clavipes spidroin 1 rS1/9 after its introduction into the ischemia-damaged brain. We used nestin–green fluorescent protein (GFP) transgenic reporter mouse line, in which neural stem/progenitor cells are easily visualized and quantified by the expression of GFP, to determine the alterations in the dentate gyrus (DG) after focal ischemia in the prefrontal cortex. Changes in the proliferation of neural stem/progenitor cells during the first weeks following photothrombosis-induced brain ischemia and in vitro effects of spidroin rS1/9 in rat primary neuronal cultures were the subject of the study. The introduction of microparticles of the recombinant protein rS1/9 into the area of ischemic damage to the prefrontal cortex leads to a higher proliferation rate and increased survival of progenitor cells in the DG of the hippocampus which functions as a niche of brain stem cells located at a distance from the injury zone. rS1/9 also increased the levels of a mitochondrial probe in DG cells, which may report on either an increased number of mitochondria and/or of the mitochondrial membrane potential in progenitor cells. Apparently, the stimulation of progenitor cells was caused by formed biologically active products stemming from rS1/9 biodegradation which can also have an effect upon the growth of primary cortical neurons, their adhesion, neurite growth, and the formation of a neuronal network. The high biological activity of rS1/9 suggests it as an excellent material for therapeutic usage aimed at enhancing brain plasticity by interacting with stem cell niches. Substances formed from rS1/9 can also be used to enhance primary neuroprotection resulting in reduced cell death in the injury area. © Copyright © 2020 Moisenovich, Silachev, Moysenovich, Arkhipova, Shaitan, Bogush, Debabov, Latanov, Pevzner, Zorova, Babenko, Plotnikov and Zorov

    β-Maleimide substituted meso-arylporphyrins: Synthesis, transformations, physico-chemical and antitumor properties

    No full text
    The maleimide moiety is widely used in drug design. To explore the properties of maleimide containing photosensitizers we obtained a series of new β-maleimide functionalized meso-arylporphyrins through acylation of β-amino group in porphyrins with maleic anhydride followed by condensation of maleic acid monoamides. The selective reactivity of porphyrin maleimides toward thiols was demonstrated using mercaptocarboranes and cysteine. New derivatives retained the ability of tetrapyrrolic macrocyclic compounds to absorb light in visible spectral region and to generate triplet states and reactive oxygen species upon photoactivation. Importantly, illumination of cells loaded with a cell permeable 2-{3-[(o-carboran-1′-yl)thio]pyrrolidine-2,5-dione-1-yl}-5,10,15,20-tetraphenylporphyrin triggered rapid (within the initial minutes) generation of superoxide anion radical concomitantly with a decrease of mitochondrial membrane potential, and then the loss of the plasma membrane integrity and cell death. Thus, the maleimide-substituted porphyrins represent a new chemotype of polyfunctionalized compounds for an in-depth investigation as photosensitizers in cancer and beyond. © 201

    The synthetic fluorinated tetracarboranylchlorin as a versatile antitumor photoradiosensitizer

    No full text
    Tetrapyrrolic macrocycles are suitable for a variety of chemical modifications aimed at new agents for binary antitumor treatment and diagnosis. Previously we have reported that the conjugation of one single carborane cage to the chlorin e6 macrocycle, a modification designed for tumor sensitization in photodynamic (PDT) and boron neutron capture (BNCT) therapies, yielded the derivative with a higher photosensitizing potency in the models of transplanted rodent tumors. This effect was mechanistically linked to the localization of the carboranylchlorin in membrane organelles due to the carborane moiety. Further exploring the potential of modified tetrapyrrolic compounds as photoradiosensitizers we synthesized the chlorin derivative carrying four closo-carborane cages (44 boron atoms) and 16 fluorine atoms at the periphery of the macrocycle (fluorinated tetracarboranylchlorin, compound 1). For comparison of the properties of 1, its fluorine free congener (tetracarboranylchlorin 6) was obtained. The water soluble 1 and 6 accumulated preferentially in cells selected for resistance to chemotherapeutic drugs (multidrug resistance and cisplatin resistance) than in the parental non-selected counterparts. Compounds 1 and 6 showed a negligible dark cytotoxicity. In contrast, a monochromatic light illumination of cells loaded with low micromolar concentrations of 1 or 6 triggered rapid (within minutes) photonecrosis as determined by the entry of propidium iodide or SYTOX dyes into the parental as well as into resistant cells. In vivo 1 or 6 (up to 80 mg/kg i.p.) caused no general toxicity in Balb/c or C57BL6 mice. Illumination with a monochromatic light of B16 melanoma transplants in mice injected with 5 mg/kg 1 or 6 caused a significant shrinkage of tumor foci, with no re-growth in 77.8% animals by day 21 post PDT. BNCT on C6 rat glioma xenografts in Balb/c nu/nu mice injected i.p. with 5 mg/kg 1 led to a decrease of tumor foci and cure of animals by day 29 whereas the radiosensitizing potency of 6 was less pronounced. This difference was attributable to a limited intratumoral accumulation of 6. Altogether, an extensive modification of the chlorin macrocycle periphery with polyfluorines and polycarboranes yielded potent and well tolerable compounds for PDT and BNCT. © 2020 Elsevier Lt

    Poly(3-hydroxybutyrate) and Human Microbiota (Review)

    No full text
    corecore