628 research outputs found

    A Two-Dimensional MagnetoHydrodynamics Scheme for General Unstructured Grids

    Get PDF
    We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation-hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALE). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of div(\bB) by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multi-D radiation-magnetohydrodynamics (RMHD) is relevant.Comment: 22 pages, including 11 figures; Accepted to the Astrophysical Journal. Higher resolution figures available at http://zenith.as.arizona.edu/~burrows/mhd-code

    Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions

    Get PDF
    In the context of 2D, axisymmetric, multi-group, radiation/hydrodynamic simulations of core-collapse supernovae over the full 180^{\circ} domain, we present an exploration of the progenitor dependence of the acoustic mechanism of explosion. All progenitor models we have tested with our Newtonian code explode. We investigate the roles of the Standing-Accretion-Shock-Instability (SASI), the excitation of core g-modes, the generation of core acoustic power, the ejection of matter with r-process potential, the wind-like character of the explosion, and the fundamental anisotropy of the blasts. We find that the breaking of spherical symmetry is central to the supernova phenomenon and the blasts, when top-bottom asymmetric, are self-collimating. We see indications that the initial explosion energies are larger for the more massive progenitors, and smaller for the less massive progenitors, and that the neutrino contribution to the explosion energy may be an increasing function of progenitor mass. The degree of explosion asymmetry we obtain is completely consistent with that inferred from the polarization measurements of Type Ic supernovae. Furthermore, we calculate for the first time the magnitude and sign of the net impulse on the core due to anisotropic neutrino emission and suggest that hydrodynamic and neutrino recoils in the context of our asymmetric explosions afford a natural mechanism for observed pulsar proper motions. [abridged]Comment: Accepted to the Astrophysical Journal, 23 pages in emulateapj format, including 12 figure

    Sources and variations of tropospheric ozone in central Siberia: observations and model simulations

    Get PDF
    IOP Conference Series: Earth and Environmental Science, Climate change: causes, risks, consequences, problems of adaptation and management" 26-28 November 2019, Moscow, Russian Federatio

    Material fragmentation as dissipative process of micro rotation sequence formation: Hybrid model of excitable cellular automata

    Get PDF
    The authors have developed a multi-level model of energy propagation along interfaces between the various structural elements of a solid with taking into account mutual energy transformations of various kinds. They have also designed a computer simulation tool based on the excitable cellular automaton (ECA) method. An algorithm for calculating the local moments of forces has been developed for the case of material rotation and torsion. The relationship for the accumulated elastic energy is supplemented with a dissipation term. Numerical experiments have been carried out on high-energy impact on polycrystalline copper specimens with different grain sizes. The paper shows that during the nanostructuring of material surface layer, the dissipation of elastic energy gives rise to the rotation of structural elements. This makes it possible to prevent the occurrence of stress concentrators with peak values typical of coarse-grained specimens and reducing their mechanical properties

    Influence of stress concentrator shape and testing temperature on impact fracture regularities of pipeline steel

    Get PDF
    The structure and impact toughness of the pipeline 17Mn1Si steel have been studied. The main attention was paid to the analysis of various conditions of stress concentration under dynamic loadings. The process of strain localization with increasing stress state stiffness at the tip of the concentrator with decreasing testing temperature was investigated. Impact loading diagrams for specimens with various stress concentrator shapes were registered and analyzed

    Influence of stress concentrator shape and testing temperature on impact fracture regularities of pipeline steel

    Get PDF
    The structure and impact toughness of the pipeline 17Mn1Si steel have been studied. The main attention was paid to the analysis of various conditions of stress concentration under dynamic loadings. The process of strain localization with increasing stress state stiffness at the tip of the concentrator with decreasing testing temperature was investigated. Impact loading diagrams for specimens with various stress concentrator shapes were registered and analyzed
    corecore