16 research outputs found

    Growth differentiation factor-15 and prediction of cancer-associated thrombosis and mortality: a prospective cohort study

    Full text link
    Background Patients with cancer are at increased risk of venous thromboembolism (VTE) and arterial thromboembolic/thrombotic events (ATEs). Growth differentiation factor-15 (GDF-15) improves cardiovascular risk assessment, but its predictive utility in patients with cancer remains undefined. Objectives To investigate the association of GDF-15 with the risks of VTE, ATE, and mortality in patients with cancer and its predictive utility alongside established models. Methods The Vienna Cancer and Thrombosis Study (CATS)—a prospective, observational cohort study of patients with newly diagnosed or recurrent cancer—which was followed for 2 years, served as the study framework. Serum GDF-15 levels at study inclusion were measured, and any association with VTE, ATE, and death was determined using competing risk (VTE/ATE) or Cox regression (death) modeling. The added value of GDF-15 to established VTE risk prediction models was assessed using the Khorana and Vienna CATScore. Results Among 1531 included patients with cancer (median age, 62 years; 53% men), median GDF-15 levels were 1004 ng/L (IQR, 654-1750). Increasing levels of GDF-15 were associated with the increased risks of VTE, ATE, and all-cause death ([subdistribution] hazard ratio per doubling, 1.16 [95% CI, 1.03-1.32], 1.30 [95% CI, 1.11-1.53], and 1.57 [95% CI, 1.46-1.69], respectively). After adjustment for clinically relevant covariates, the association only prevailed for all-cause death (hazard ratio, 1.21; 95% CI, 1.10-1.33) and GDF-15 did not improve the performance of the Khorana or Vienna CATScore. Conclusion GDF-15 is strongly associated with survival in patients with cancer, independent of the established risk factors. While an association with ATE and VTE was identified in univariable analysis, GDF-15 was not independently associated with these outcomes and failed to improve established VTE prediction models

    Left ventricular ejection fraction and cardiac biomarkers for dynamic prediction of cardiotoxicity in early breast cancer

    Get PDF
    BACKGROUND/PURPOSE: This study aims to quantify the utility of monitoring LVEF, hs-cTnT, and NT-proBNP for dynamic cardiotoxicity risk assessment in women with HER2+ early breast cancer undergoing neoadjuvant/adjuvant trastuzumab-based therapy. MATERIALS AND METHODS: We used joint models of longitudinal and time-to-event data to analyze 1,136 echocardiography reports and 326 hs-cTnT and NT-proBNP measurements from 185 women. Cardiotoxicity was defined as a 10% decline in LVEF below 50% and/or clinically overt heart failure. RESULTS: Median pre-treatment LVEF was 64%, and 19 patients (10%) experienced cardiotoxicity (asymptomatic n = 12, during treatment n = 19). The pre-treatment LVEF strongly predicted for cardiotoxicity (subdistribution hazard ratio per 5% increase in pre-treatment LVEF = 0.68, 95%CI: 0.48–0.95, p = 0.026). In contrast, pre-treatment hs-cTnT and NT-proBNP were not consistently associated with cardiotoxicity. During treatment, the longitudinal LVEF trajectory dynamically identified women at high risk of developing cardiotoxicity (hazard ratio per 5% LVEF increase at any time of follow-up = 0.36, 95% CI: 0.2–0.65, p = 0.005). Thirty-four patients (18%) developed an LVEF decline ≥ 5% from pre-treatment to first follow-up (“early LVEF decline”). One-year cardiotoxicity risk was 6.8% in those without early LVEF decline and pre-treatment LVEF ≥ 60% (n = 117), 15.9% in those with early LVEF decline or pre-treatment LVEF 5% during trastuzumab-based therapy. The longitudinal LVEF trajectory but not hs-cTnT or NT-proBNP allows for a dynamic assessment of cardiotoxicity risk in this setting

    Systemic Inflammation and Activation of Haemostasis Predict Poor Prognosis and Response to Chemotherapy in Patients with Advanced Lung Cancer

    No full text
    Systemic inflammation and activation of haemostasis are common in patients with lung cancer. Both conditions support tumour growth and metastasis. Therefore, inflammatory and haemostatic biomarkers might be useful for prediction of survival and therapy response. Patients with unresectable/metastatic lung cancer initiating 1st-line chemotherapy (n = 277, 83% non-small cell lung cancer) were followed in a prospective observational cohort study. A comprehensive panel of haemostatic biomarkers (D-dimer, prothrombin fragment 1+2, soluble P-selectin, fibrinogen, coagulation factor VIII, peak thrombin generation), blood count parameters (haemoglobin, leucocytes, thrombocytes) and inflammatory markers (neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, C-reactive protein) were measured at baseline. We assessed the association of biomarkers with mortality, progression-free-survival (PFS) and disease-control-rate (DCR). A biomarker-based prognostic model was derived. Selected inflammatory and haemostatic biomarkers were strong and independent predictors of mortality and therapy response. The strongest predictors (D-dimer, LMR, CRP) were incorporated in a unified biomarker-based prognostic model (1-year overall-survival (OS) by risk-quartiles: 79%, 69%, 51%, 24%; 2-year-OS: 53%, 36%, 23%, 8%; log-rank p < 0.001). The biomarker-based model further predicted shorter PFS and lower DCR. In conclusion, inflammatory and haemostatic biomarkers predict poor prognosis and treatment-response in patients with advanced lung cancer. A biomarker-based prognostic score efficiently predicts mortality and disease progression beyond clinical characteristics

    Extended anticoagulation treatment for cancer-associated thrombosis-Rates of recurrence and bleeding beyond 6 months: A systematic review.

    No full text
    Patients with cancer-associated venous thromboembolism (VTE) are recommended to receive treatment with therapeutic anticoagulation for at least 3-6 months. Little data exist on extended treatment beyond 6 months. To comprehensively summarize the best available evidence on incidence of recurrent VTE and major bleeding 6-12 months after the index event in patients with cancer-associated VTE. We systematically screened biomedical databases (MEDLINE, Embase, CENTRAL) to identify studies reporting recurrent VTE and/or bleeding events between 6 and 12 months after a diagnosis of cancer-associated VTE. Based on the observed heterogeneity in study design, setting, patient cohort characteristics, anticoagulation strategies, and outcome rates, no overall quantitative estimate of outcome rates was calculated. We screened 2597 publications and identified 11 eligible studies matching predefined in-/exclusion criteria, reporting on 3019 patients specifically during the 6- to 12-month period post-index VTE. Overall rates of recurrent VTE in this timeframe varied substantially (1%-12%), with the highest risk observed in the patient subgroup with residual vein thrombosis present at 6 months randomized to receive no anticoagulation (13%-15%). Reported rates of major bleeding between 6 and 12 months were between 2% and 5%. In this systematic review, we provide a comprehensive and structured summary of the best available evidence on recurrence and bleeding risk between 6 and 12 months after cancer-associated VTE. VTE recurrence remains common beyond 6 months and continuation of different anticoagulation strategies has an acceptable safety profile indicated by lower bleeding rates. These findings support guideline recommendations to continue anticoagulation treatment beyond 6 months in patients with active cancer

    Antithrombin Activity and Association with Risk of Thrombosis and Mortality in Patients with Cancer

    No full text
    Venous and arterial thromboembolism (VTE/ATE) are common complications in cancer patients. Antithrombin deficiency is a risk factor for thrombosis in the general population, but its connection to risk of cancer-associated thrombosis is unclear. We investigated the association of antithrombin activity levels with risk of cancer-associated VTE/ATE and all-cause mortality in an observational cohort study including patients with cancer, the Vienna Cancer and Thrombosis Study. In total, 1127 patients were included (45% female, median age: 62 years). Amongst these subjects, 110 (9.7%) patients were diagnosed with VTE, 32 (2.8%) with ATE, and 563 (49.9%) died. Antithrombin was not associated with a risk of VTE (subdistribution hazard ratio (SHR): 1.00 per 1% increase in antithrombin level; 95% CI: 0.99–1.01) or ATE (SHR: 1.00; 95% CI: 0.98–1.03). However, antithrombin showed a u-shaped association with the risk of all-cause death, i.e., patients with very low but also very high levels had poorer overall survival. In the subgroup of patients with brain tumors, higher antithrombin levels were associated with ATE risk (SHR: 1.02 per 1% increase; 95% CI: 1.00–1.04) and mortality (HR: 1.01 per 1% increase; 95% CI: 1.00–1.02). Both high and low antithrombin activity was associated with the risk of death. However, no association with cancer-associated VTE and ATE across all cancer types was found, with the exception of in brain tumors

    Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability

    No full text
    In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin–α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients
    corecore