15 research outputs found

    Agonist-stimulated calcium decreases in ovine ciliated airway epithelial cells: role of mitochondria

    No full text
    In ovine ciliated tracheal epithelial cells, acetylcholine (ACh) activates signal transduction pathways that not only transiently increase cytoplasmic Ca2+ ([Ca2+]i) but also actively lower [Ca2+]i. The pathway for decreasing [Ca2+]i is clearly revealed after depletion of intracellular Ca2+ stores by thapsigargin (Tg), 2,5-di-(tert-butyl)-1,4-benzohydroquinone or NiCl2. Measurements with microinjected fura-2 excluded a [Ca2+] measurement artefact.A four-compartment model to simulate calcium transients in non-excitable cells (consisting of a plasma membrane Ca2+ pump and channel; Ca2+ store with pump and channel; and cytosolic Ca2+ buffer) could not account for the observed [Ca2+]i decrease. We therefore explored, by simulation and experimentation, several different mechanisms that could account for it.The ACh-stimulated [Ca2+]i decrease was not due to an inhibition of Ca2+ influx (Ca2+ channel blockers or absence of extracellular calcium had no effect), activation of a plasma membrane Ca2+-ATPase (two inhibitors, vanadate (30 mM) and lanthanum (10 mM), had no effect) or inhibition of the Na+-Ca2+ exchanger (replacing extracellular Na+ with N-methylglucamine had no effect).The application of mitochondrial uncouplers (5 μM CCCP or 5 μM FCCP), eliminated the ACh-induced [Ca2+]i decrease. Addition of CCCP at the nadir of the decrease restored intracellular calcium levels of Tg-treated cells to baseline faster than controls not exposed to mitochondrial uncouplers. CCCP application to naïve cells did not block the ACh-induced transient increase in [Ca2+]i.These data suggest that ACh-induced [Ca2+]i decreases in ciliated cells are caused by stimulated Ca2+ uptake into mitochondria

    Liver Regeneration and the Atrophy-Hypertrophy Complex

    No full text
    The atrophy-hypertrophy complex (AHC) refers to the controlled restoration of liver parenchyma following hepatocyte loss. Different types of injury (e.g., toxins, ischemia/reperfusion, biliary obstruction, and resection) elicit the same hypertrophic response in the remnant liver. The AHC involves complex anatomical, histological, cellular, and molecular processes. The signals responsible for these processes are both intrinsic and extrinsic to the liver and involve both physical and molecular events. In patients in whom resection of large liver malignancies would result in an inadequate functional liver remnant, preoperative portal vein embolization may increase the remnant liver sufficiently to permit aggressive resections. Through continued basic science research, the cellular mechanisms of the AHC may be maximized to permit curative resections in patients with potentially prohibitive liver function
    corecore