6 research outputs found

    Design of a compact hexagonal structured dual band MIMO antenna using orthogonal polarization for WLAN and satellite applications

    Get PDF
    In this paper, a compact dual band multiple-input multiple-output (MIMO) antenna system for WLAN and X-band satellite applications (2.4/9.8 GHz respectively) is proposed. On the top face of the substrate, two antenna elements with a size of 20 × 24 mm2 are placed side by side and fed with matched orthogonal micro-strip lines. The two antenna elements have orthogonal polarization which can reduce the mutual coupling between its ports. The designed antenna system is fabricated and measured to validate the simulation results. The impedance bandwidths are about 370 MHz (2.19 to 2.56 GHz) and 630 MHz (9.44 to 10.07 GHz), while the obtained isolation is greater than 14 dB at the operating bands. Furthermore, the envelope correlation is less than 0.052 and 0.008 at 2.4 and 9.8 GHz, respectively. Hence the diversity gain is higher than 9.98 in the frequency bands of interest

    Analysis and design of a compact ultra-wideband antenna with WLAN and X-band satellite notch

    Get PDF
    A compact design of ultra-wideband (UWB) antenna with dual band-notched characteristics based on split-ring resonators (SRR) are investigated in this paper. The wider impedance bandwidth (from 2.73 to 11.34 GHz) is obtained by using two symmetrical slits in the radiating patch and another slit in the partial ground plane. The dual band-notch rejection at WLAN and X-band downlink satellite communication system are obtained by inserting a modified U-strip on the radiating patch at 5.5 GHz and embedding a pair of rectangular SRRs on both sides of the microstrip feed line at 7.5 GHz, respectively. The proposed antenna is simulated and tested using CST MWS high frequency simulator and exhibits the advantages of compact size, simple design and each notched frequency band can be controlled independently by using the SRR geometrical parameters. Therefore, the parametric study is carried out to understand the mutual coupling between the dual band-notched elements. To validate simulation results of our design, a prototype is fabricated and good agreement is achieved between measurement and simulation. Furthermore, a radiation patterns, satisfactory gain, current distribution and VSWR result at the notched frequencies make the proposed antenna a suitable candidate for practical UWB applications

    High Isolation and Ideal Correlation Using Spatial Diversity in a Compact MIMO Antenna for Fifth-Generation Applications

    Full text link
    This paper presents a compact Multiple Input Multiple Output antenna with high isolation and low envelope correlation (ECC) for fifth-generation applications using spatial diversity technique. The proposed MIMO antenna consists of two single antennas, each having size of 13 × 12.8 mm2, symmetrically arranged next to each other. The single and MIMO antennas are simulated and analyzed. To verify the simulated results, the prototype antennas were fabricated and measured. A good agreement between measurements and simulations is obtained. The proposed antenna covers the 28 GHz band (27.5–28.35 GHz) allocated by the FCC for 5G applications. Moreover, the isolation is more than 35 dB and the ECC is less than 0.0004 at the operating band, which means that the mutual coupling between the two elements is negligible. The MIMO parameters, such as diversity gain (DG), total active reflection coefficient (TARC), realized gain, and efficiency, are also studied. Thus, the results demonstrate that our antenna is suitable for 5G MIMO applications

    DESIGN OF A COMPACT BROADBAND ANTENNA USING CHARACTERISTIC MODE ANALYSIS FOR MICROWAVE APPLICATIONS

    Full text link
    A compact broadband antenna of dimensions 27 mm x 28 mm x 1.6 mm and with good impedance matching is designed for high-bandwidth radio systems with a short range. To improve the impedance matching, two rectangular slots are created on the radiating element, and the ground plane size is reduced to extend the ultra-wideband frequency band. The antenna bandwidth and radiation performance are analysed using characteristic mode theory (TCM). The performance is compared to the desired specifications, and the shape and size are modified to produce efficient radiation and dominant radiation patterns. The findings clearly demonstrate that the six modes are resonant with (λn = 0). This implies that the eigenvalues of the six modes contribute strongly to dominant electromagnetic radiation and have high modal significance values around 1 at their respective frequencies. Furthermore, the characteristic angle indicates that the antenna resonates at 180°, since the six modes intersect the axis line at 180° at their respective frequencies. Experimental results show a bandwidth of 109.7% between 5.64 and 19.34 GHz, a maximum gain of 6.3 dB, and a maximum efficiency of approximately 86.5%. These results make this antenna a versatile and effective choice for a wide variety of communications and electronics applications and easy to install in narrow spaces due to its easy design characteristics, small size, and light weight. [JJCIT 2023; 9(2.000): 107-117
    corecore