843 research outputs found

    Calculations of Pressure Pulsations in Pipelines In Case of Non-Sinusoidal Input Flows

    Get PDF

    Off-diagonal impedance in amorphous wires and application to linear magnetic sensors

    Full text link
    The magnetic-field behaviour of the off-diagonal impedance in Co-based amorphous wires is investigated under the condition of sinusoidal (50 MHz) and pulsed (5 ns rising time) current excitations. For comparison, the field characteristics of the diagonal impedance are measured as well. In general, when an alternating current is applied to a magnetic wire the voltage signal is generated not only across the wire but also in the coil mounted on it. These voltages are related with the diagonal and off-diagonal impedances, respectively. It is demonstrated that these impedances have a different behaviour as a function of axial magnetic field: the former is symmetrical and the latter is antisymmetrical with a near linear portion within a certain field interval. In the case of the off-diagonal response, the dc bias current eliminating circular domains is necessary. The pulsed excitation that combines both high and low frequency harmonics produces the off-diagonal voltage response without additional bias current or field. This suits ideal for a practical sensor circuit design. The principles of operation of a linear magnetic sensor based on C-MOS transistor circuit are discussed.Comment: Accepted to IEEE Trans. Magn. (2004

    Residues and Topological Yang-Mills Theory in Two Dimensions

    Get PDF
    A residue formula which evaluates any correlation function of topological SUnSU_n Yang-Mills theory with arbitrary magnetic flux insertion in two dimensions are obtained. Deformations of the system by two form operators are investigated in some detail. The method of the diagonalization of a matrix valued field turns out to be useful to compute various physical quantities. As an application we find the operator that contracts a handle of a Riemann surface and a genus recursion relation.Comment: 23 pages, some references added, to appear in Rev.Math.Phy

    The role of biomimetic hypoxia on cancer cell behaviour in 3d models: A systematic review

    Get PDF
    The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response

    Hybrid expansions for local structural relaxations

    Full text link
    A model is constructed in which pair potentials are combined with the cluster expansion method in order to better describe the energetics of structurally relaxed substitutional alloys. The effect of structural relaxations away from the ideal crystal positions, and the effect of ordering is described by interatomic-distance dependent pair potentials, while more subtle configurational aspects associated with correlations of three- and more sites are described purely within the cluster expansion formalism. Implementation of such a hybrid expansion in the context of the cluster variation method or Monte Carlo method gives improved ability to model phase stability in alloys from first-principles.Comment: 8 pages, 1 figur

    Learning with Biased Complementary Labels

    Full text link
    In this paper, we study the classification problem in which we have access to easily obtainable surrogate for true labels, namely complementary labels, which specify classes that observations do \textbf{not} belong to. Let YY and Yˉ\bar{Y} be the true and complementary labels, respectively. We first model the annotation of complementary labels via transition probabilities P(Yˉ=iY=j),ij{1,,c}P(\bar{Y}=i|Y=j), i\neq j\in\{1,\cdots,c\}, where cc is the number of classes. Previous methods implicitly assume that P(Yˉ=iY=j),ijP(\bar{Y}=i|Y=j), \forall i\neq j, are identical, which is not true in practice because humans are biased toward their own experience. For example, as shown in Figure 1, if an annotator is more familiar with monkeys than prairie dogs when providing complementary labels for meerkats, she is more likely to employ "monkey" as a complementary label. We therefore reason that the transition probabilities will be different. In this paper, we propose a framework that contributes three main innovations to learning with \textbf{biased} complementary labels: (1) It estimates transition probabilities with no bias. (2) It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels. (3) It theoretically ensures that the classifier learned with complementary labels converges to the optimal one learned with true labels. Comprehensive experiments on several benchmark datasets validate the superiority of our method to current state-of-the-art methods.Comment: ECCV 2018 Ora

    Reachability problems for products of matrices in semirings

    Get PDF
    We consider the following matrix reachability problem: given rr square matrices with entries in a semiring, is there a product of these matrices which attains a prescribed matrix? We define similarly the vector (resp. scalar) reachability problem, by requiring that the matrix product, acting by right multiplication on a prescribed row vector, gives another prescribed row vector (resp. when multiplied at left and right by prescribed row and column vectors, gives a prescribed scalar). We show that over any semiring, scalar reachability reduces to vector reachability which is equivalent to matrix reachability, and that for any of these problems, the specialization to any r2r\geq 2 is equivalent to the specialization to r=2r=2. As an application of this result and of a theorem of Krob, we show that when r=2r=2, the vector and matrix reachability problems are undecidable over the max-plus semiring (Z{},max,+)(Z\cup\{-\infty\},\max,+). We also show that the matrix, vector, and scalar reachability problems are decidable over semirings whose elements are ``positive'', like the tropical semiring (N{+},min,+)(N\cup\{+\infty\},\min,+).Comment: 21 page

    A new path to measure antimatter free fall

    Get PDF
    We propose an experiment to measure the free fall acceleration of neutral antihydrogen atoms. The originality of this path is to first produce the Hbar+ ion
    corecore