11,631 research outputs found
QED self-energy contribution to highly-excited atomic states
We present numerical values for the self-energy shifts predicted by QED
(Quantum Electrodynamics) for hydrogenlike ions (nuclear charge ) with an electron in an , 4 or 5 level with high angular momentum
(). Applications include predictions of precision transition
energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure
Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation
The self-energy screening correction is evaluated in a model in which the
effect of the screening electron is represented as a first-order perturbation
of the self energy by an effective potential. The effective potential is the
Coulomb potential of the spherically averaged charge density of the screening
electron. We evaluate the energy shift due to a , ,
, or electron screening a , ,
, or electron, for nuclear charge Z in the range . A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table
Fundamental constants and tests of theory in Rydberg states of one-electron ions
The nature of the theory of circular Rydberg states of hydrogenlike ions
allows highly-accurate predictions to be made for energy levels. In particular,
uncertainties arising from the problematic nuclear size correction which beset
low angular-momentum states are negligibly small for the high angular-momentum
states. The largest remaining source of uncertainty can be addressed with the
help of quantum electrodynamics (QED) calculations, including a new
nonperturbative result reported here. More stringent tests of theory and an
improved determination of the Rydberg constant may be possible if predictions
can be compared with precision frequency measurements in this regime. The
diversity of information can be increased by utilizing a variety of
combinations of ions and Ryberg states to determine fundamental constants and
test theory.Comment: 10 pages; LaTe
Optical Turbulence Measurements and Models for Mount John University Observatory
Site measurements were collected at Mount John University Observatory in 2005
and 2007 using a purpose-built scintillation detection and ranging system.
profiling indicates a weak layer located at 12 - 14 km above sea
level and strong low altitude turbulence extending up to 5 km. During calm
weather conditions, an additional layer was detected at 6 - 8 km above sea
level. profiling suggests that tropopause layer velocities are nominally
12 - 30 m/s, and near-ground velocities range between 2 -- 20 m/s, dependent on
weather. Little seasonal variation was detected in either and
profiles. The average coherence length, , was found to be cm for
the full profile at a wavelength of 589 nm. The average isoplanatic angle,
, was arcsec. The mean turbulence altitude,
, was found to be km above sea level. No average in the
Greenwood frequency, , could be established due to the gaps present in the
\vw\s profiles obtained. A modified Hufnagel-Valley model was developed to
describe the profiles at Mount John, which estimates at 6 cm
and at 0.9 arcsec. A series of models were developed, based
on the Greenwood wind model with an additional peak located at low altitudes.
Using the model and the suggested model for moderate ground
wind speeds, is estimated at 79 Hz.Comment: 14 pages; accepted for publication in PAS
Lamb Shift of 3P and 4P states and the determination of
The fine structure interval of P states in hydrogenlike systems can be
determined theoretically with high precision, because the energy levels of P
states are only slightly influenced by the structure of the nucleus. Therefore
a measurement of the fine structure may serve as an excellent test of QED in
bound systems or alternatively as a means of determining the fine structure
constant with very high precision. In this paper an improved analytic
calculation of higher-order binding corrections to the one-loop self energy of
3P and 4P states in hydrogen-like systems with low nuclear charge number is
presented. A comparison of the analytic results to the extrapolated numerical
data for high ions serves as an independent test of the analytic
evaluation. New theoretical values for the Lamb shift of the P states and for
the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure
Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude
Recent measurements of the Cosmic Microwave Background (CMB) by the Planck
Collaboration have produced arguably the most powerful observational evidence
in support of the standard model of cosmology, i.e. the spatially flat
CDM paradigm. In this work, we perform model selection tests to
examine whether the base CMB temperature and large scale polarization
anisotropy data from Planck 2015 (P15) prefer any of eight commonly used
one-parameter model extensions with respect to flat CDM. We find a
clear preference for models with free curvature, , or free
amplitude of the CMB lensing potential, . We also further develop
statistical tools to measure tension between datasets. We use a Gaussianization
scheme to compute tensions directly from the posterior samples using an
entropy-based method, the surprise, as well as a calibrated evidence ratio
presented here for the first time. We then proceed to investigate the
consistency between the base P15~CMB data and six other CMB and distance
datasets. In flat CDM we find a tension between the base
P15~CMB data and a distance ladder measurement, whereas the former are
consistent with the other datasets. In the curved CDM model we find
significant tensions in most of the cases, arising from the well-known low
power of the low- multipoles of the CMB data. In the flat CDM
model, however, all datasets are consistent with the base
P15~CMB observations except for the CMB lensing measurement, which remains in
significant tension. This tension is driven by the increased power of the CMB
lensing potential derived from the base P15~CMB constraints in both models,
pointing at either potentially unresolved systematic effects or the need for
new physics beyond the standard flat CDM model.Comment: 16 pages, 8 figures, 6 table
Two-Loop Bethe Logarithms
We calculate the two-loop Bethe logarithm correction to atomic energy levels
in hydrogen-like systems. The two-loop Bethe logarithm is a low-energy quantum
electrodynamic (QED) effect involving multiple summations over virtual excited
atomic states. Although much smaller in absolute magnitude than the well-known
one-loop Bethe logarithm, the two-loop analog is quite significant when
compared to the current experimental accuracy of the 1S-2S transition: it
contributes -8.19 and -0.84 kHz for the 1S and the 2S state, respectively. The
two-loop Bethe logarithm has been the largest unknown correction to the
hydrogen Lamb shift to date. Together with the ongoing measurement of the
proton charge radius at the Paul Scherrer Institute its calculation will bring
theoretical and experimental accuracy for the Lamb shift in atomic hydrogen to
the level of 10^(-7).Comment: 4 pages, RevTe
Black-Body Radiation Correction to the Polarizability of Helium
The correction to the polarizability of helium due to black-body radiation is
calculated near room temperature. A precise theoretical determination of the
black-body radiation correction to the polarizability of helium is essential
for dielectric gas thermometry and for the determination of the Boltzmann
constant. We find that the correction, for not too high temperature, is roughly
proportional to a modified hyperpolarizability (two-color hyperpolarizability),
which is different from the ordinary hyperpolarizability of helium. Our
explicit calculations provide a definite numerical result for the effect and
indicate that the effect of black-body radiation can be excluded as a limiting
factor for dielectric gas thermometry using helium or argon.Comment: 8 pages; RevTe
- …