2,750 research outputs found
A tale of two cervids: habitat selection and spatial ecology of Roosevelt and tule elk in California
California’s Roosevelt (Cervus canadensis rooseveltii) and tule elk (C. c. nannodes) populations have experienced a remarkable recovery after over-hunting and habitat loss nearly extirpated them from the state. Greater clarity of Roosevelt and tule elk habitat selection patterns would help managers continue to effectively support the recovery of these two iconic subspecies. As the manner in which elk populations balance their competing resource needs is unique to each population (Skovlin et al. 2002), I have examined Roosevelt and tule elk habitat selection patterns in separate analyses and present these results in independent chapters. In both cases, I examine the role behavior can play in influencing habitat selection and fitness. Habitat selection models rely on a number of assumptions, which have proven difficult to test, particularly in regards to how behavior relates to perceived habitat suitability and resource availability. In this thesis, I address some of these assumptions by accounting for variation in elk behavior and changing resource conditions. My results demonstrate the effect of behavioral and seasonal resource variation on habitat suitability predictions and its importance for consideration in population management decisions.
Chapter 1 Abstract:
Habitat selection models often assume individuals within a population behave identically, which is problematic as behavior can vary non-randomly due to differences in how individuals perceive and respond to predation risk. I used GPS location data and a measure of human-tolerance (on a scale of “bold” to “shy”) to examine habitat selection patterns and make predictions about habitat suitability and potential abundance of Roosevelt elk in northwestern California, USA. Overall, elk selected for areas of open land cover types, in close proximity to forest edge, further from roads, and with gentle terrain. Shy elk remained closer to forest edge and further from roads compared to bold elk. Predicted elk habitat differed between bold and shy elk, but potential abundance estimates were relatively consistent at around 13,000-14,000 elk in the study area. Management decisions should be made at the level of individual elk groups when feasible, as decisions that affect an elk group’s tolerance of human disturbance will impact the availability and composition of suitable habitat, and ultimately may affect potential abundance.
Chapter 2 Abstract:
Climate change is expected to affect arid-system ungulate populations by altering the availability of critical resources, such as forage and water sources, and by increasing the frequency and severity of drought. The habitat selection patterns of the tule elk, a subspecies endemic to the Mediterranean climate regions of California, may provide insight into the behavioral adaptations which will allow affected ungulate populations to remain in their current geographic ranges. I used location data from GPS-collared tule elk to model their response to different environmental covariates including water sources, forage dynamics, human disturbance, and drought, across the wet and dry seasons. I found that tule elk behaved as central place foragers around water sources during the dry season, and that this behavior was likely tied to forage moisture content. During the wet season, elk appeared to be water independent and selected for high quality forage sources. These patterns were mediated by drought, as severe drought resulted in elk selecting for areas closer to water sources in the dry season and further from water sources in the wet season. My findings will help inform management decisions regarding artificial water source allocation and minimizing the effect of human disturbance on resource availability
In Situ Spectroscopic Detection of Large-Scale Reorientations of Transmembrane Helices During Influenza A M2 Channel Opening
Viroporins are small ion channels in membranes of enveloped viruses that play key roles during viral life cycles. To use viroporins as drug targets against viral infection requires in-depth mechanistic understanding and, with that, methods that enable investigations under in situ conditions. Here, we apply surface-enhanced infrared absorption (SEIRA) spectroscopy to Influenza A M2 reconstituted within a solid-supported membrane, to shed light on the mechanics of its viroporin function. M2 is a paradigm of pH-activated proton channels and controls the proton flux into the viral interior during viral infection. We use SEIRA to track the large-scale reorientation of M2’s transmembrane α-helices in situ during pH-activated channel opening. We quantify this event as a helical tilt from 26° to 40° by correlating the experimental results with solid-state nuclear magnetic resonance-informed computational spectroscopy. This mechanical motion is impeded upon addition of the inhibitor rimantadine, giving a direct spectroscopic marker to test antiviral activity. The presented approach provides a spectroscopic tool to quantify large-scale structural changes and to track the function and inhibition of the growing number of viroporins from pathogenic viruses in future studies
In Situ Spectroscopic Detection of Large‐Scale Reorientations of Transmembrane Helices During Influenza A M2 Channel Opening
Viroporins are small ion channels in membranes of enveloped viruses that play key roles during viral life cycles. To use viroporins as drug targets against viral infection requires in-depth mechanistic understanding and, with that, methods that enable investigations under in situ conditions. Here, we apply surface-enhanced infrared absorption (SEIRA) spectroscopy to Influenza A M2 reconstituted within a solid-supported membrane, to shed light on the mechanics of its viroporin function. M2 is a paradigm of pH-activated proton channels and controls the proton flux into the viral interior during viral infection. We use SEIRA to track the large-scale reorientation of M2’s transmembrane α-helices in situ during pH-activated channel opening. We quantify this event as a helical tilt from 26° to 40° by correlating the experimental results with solid-state nuclear magnetic resonance-informed computational spectroscopy. This mechanical motion is impeded upon addition of the inhibitor rimantadine, giving a direct spectroscopic marker to test antiviral activity. The presented approach provides a spectroscopic tool to quantify large-scale structural changes and to track the function and inhibition of the growing number of viroporins from pathogenic viruses in future studies.Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659Peer Reviewe
Recommendations for the management of opioid-induced constipation - how to improve usability in clinical practice
INTRODUCTION: Opioid-induced constipation remains undertreated despite effective and safe treatment options exists. Previous guidelines have only been partially effective in improving management, possibly due to their complexity, and studies suggest that a simple setup of concise and behaviorally-orientated steps improves usability.AREAS COVERED: This article introduces the concept of opioid-induced constipation and provides an overview of existing guidelines in this field. We also propose simplified recommendations for managing opioid-induced constipation, derived from a synthesis of current guidelines and the principles of optimal guideline design theory.EXPERT OPINION: Despite standard treatment with laxatives and fluid intake in patients with opioid-induced constipation, escalation of treatment is often needed where μ-opioid receptor antagonists or newer medications such as lubiprostone, linaclotide, or prucalopride are used. Previous guidelines have not been used sufficiently and thus management of the condition is often insufficient. We therefore propose simplified recommendations to management, which we believe can come into broader use. It was validated in primary care for credibility, clarity, relevance, usability, and overall benefit. We believe that this initiative can lead to better management of the substantial proportion of patients suffering from side effects of opioids.</p
Testing a model of minority identity achievement, identity affirmation, and psychological well-being among ethnic minority and sexual minority individuals
How is social identity related to psychological well-being among minority individuals? Drawing on developmental models of identity formation (e.g., Erikson, 1968) and on Social Identity Theory (Tajfel & Turner, 1979), we tested a conceptual model examining links between two key aspects of social identity and psychological well-being. We proposed that the association between identity achievement (exploring and understanding the meaning of one\u27s identity) and psychological well-being is mediated by identity affirmation (developing positive feelings and a sense of belonging to one\u27s social group). Across three studies, including ethnic minority high school students (Study 1), ethnic minority college students (Study 2) and lesbian and gay male adults (Study 3), we found strong support for the model. Results suggest that the process of exploring and understanding one\u27s minority identity can serve as an important basis for developing positive feelings toward and an enhanced sense of attachment to the group, which can in turn confer psychological benefits for minority individuals. Implications and directions for future research are discussed
Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2
The linear dispersion relation in graphene[1,2] gives rise to a surprising
prediction: the resistivity due to isotropic scatterers (e.g. white-noise
disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show
that acoustic phonon scattering[4-6] is indeed independent of n, and places an
intrinsic limit on the resistivity in graphene of only 30 Ohm at room
temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2,
the mean free path for electron-acoustic phonon scattering is >2 microns, and
the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known
inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon
nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by
surface phonons of the SiO2 substrate[11,12] adds a strong temperature
dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4
cm^2/Vs, pointing out the importance of substrate choice for graphene
devices[13].Comment: 16 pages, 3 figure
The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activity
DEAD box helicases use the energy of ATP hydrolysis to remodel RNA structures or RNA/protein complexes. They share a common helicase core with conserved signature motifs, and additional domains may confer substrate specificity. Identification of a specific substrate is crucial towards understanding the physiological role of a helicase. RNA binding and ATPase stimulation are necessary, but not sufficient criteria for a bona fide helicase substrate. Here, we report single molecule FRET experiments that identify fragments of the 23S rRNA comprising hairpin 92 and RNase P RNA as substrates for the Thermus thermophilus DEAD box helicase Hera. Both substrates induce a switch to the closed conformation of the helicase core and stimulate the intrinsic ATPase activity of Hera. Binding of these RNAs is mediated by the Hera C-terminal domain, but does not require a previously proposed putative RNase P motif within this domain. ATP-dependent unwinding of a short helix adjacent to hairpin 92 in the ribosomal RNA suggests a specific role for Hera in ribosome assembly, analogously to the Escherichia coli and Bacillus subtilis helicases DbpA and YxiN. In addition, the specificity of Hera for RNase P RNA may be required for RNase P RNA folding or RNase P assembly
- …