35 research outputs found

    Antibiotic use during pregnancy increases offspring asthma severity in a dose-dependent manner.

    No full text
    Background: The use of antibiotics during pregnancy is associated with increased allergic asthma risk in the offspring, and given that approximately 25% of pregnant women are prescribed antibiotics, it is important to understand the mechanisms contributing to this phenomenon. Currently, there are no studies that directly test this association experimentally. Our objective was to develop a mouse model in which antibiotic treatment during pregnancy results in increased offspring asthma susceptibility.Methods: Pregnant mice were treated daily from gestation day 8-17 with an oral solution of the antibiotic vancomycin, and three concentrations were tested. At weaning, offspring were subjected to an adjuvant-free experimental asthma protocol using ovalbumin as an allergen. The composition of the gut microbiome was determined in mothers and offspring with samples collected from five different time points; shortchain fatty acids were also analyzed in allergic offspring.Results: We found that maternal antibiotic treatment during pregnancy was associated with increased offspring asthma severity in a dose-dependent manner. Furthermore, maternal vancomycin treatment during pregnancy caused marked changes in the gut microbiome composition in both mothers and pups at several different time points. The increased asthma severity and intestinal microbiome changes in pups were also associated with significantly decreased cecal short-chain fatty acid concentrations.Conclusion: Consistent with the "Developmental Origins Hypothesis," our results confirm that exposure to antibiotics during pregnancy shapes the neonatal intestinal environment and increases offspring allergic lung inflammation

    V-REVCOMP: automated high-throughput detection of reverse complementary 16S rRNA gene sequences in large environmental and taxonomic datasets

    No full text
    Reverse complementary DNA sequences – sequences that are inadvertently given backwards with all purines and pyrimidines transposed – can affect sequence analysis detrimentally unless taken into account. We present an open-source, high-throughput software tool –v-revcomp (http://www.cmde.science.ubc.ca/mohn/software.html) – to detect and reorient reverse complementary entries of the small-subunit rRNA (16S) gene from sequencing datasets, particularly from environmental sources. The software supports sequence lengths ranging from full length down to the short reads that are characteristic of next-generation sequencing technologies. We evaluated the reliability of v-revcomp by screening all 406 781 16S sequences deposited in release 102 of the curated SILVA database and demonstrated that the tool has a detection accuracy of virtually 100%. We subsequently used v-revcomp to analyse 1 171 646 16S sequences deposited in the International Nucleotide Sequence Databases and found that about 1% of these user-submitted sequences were reverse complementary. In addition, a nontrivial proportion of the entries were otherwise anomalous, including reverse complementary chimeras, sequences associated with wrong taxa, nonribosomal genes, sequences of poor quality or otherwise erroneous sequences without a reasonable match to any other entry in the database. Thus, v-revcomp is highly efficient in detecting and reorienting reverse complementary 16S sequences of almost any length and can be used to detect various sequence anomalies
    corecore