179 research outputs found

    Fast Kronecker Matrix-Matrix Multiplication on GPUs

    Full text link
    Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.Comment: Accepted at PPoPP 202

    Exclusive Supermask Subnetwork Training for Continual Learning

    Full text link
    Continual Learning (CL) methods focus on accumulating knowledge over time while avoiding catastrophic forgetting. Recently, Wortsman et al. (2020) proposed a CL method, SupSup, which uses a randomly initialized, fixed base network (model) and finds a supermask for each new task that selectively keeps or removes each weight to produce a subnetwork. They prevent forgetting as the network weights are not being updated. Although there is no forgetting, the performance of SupSup is sub-optimal because fixed weights restrict its representational power. Furthermore, there is no accumulation or transfer of knowledge inside the model when new tasks are learned. Hence, we propose ExSSNeT (Exclusive Supermask SubNEtwork Training), that performs exclusive and non-overlapping subnetwork weight training. This avoids conflicting updates to the shared weights by subsequent tasks to improve performance while still preventing forgetting. Furthermore, we propose a novel KNN-based Knowledge Transfer (KKT) module that utilizes previously acquired knowledge to learn new tasks better and faster. We demonstrate that ExSSNeT outperforms strong previous methods on both NLP and Vision domains while preventing forgetting. Moreover, ExSSNeT is particularly advantageous for sparse masks that activate 2-10% of the model parameters, resulting in an average improvement of 8.3% over SupSup. Furthermore, ExSSNeT scales to a large number of tasks (100). Our code is available at https://github.com/prateeky2806/exessnet.Comment: ACL Findings 2023 (17 pages, 7 figures

    ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization

    Full text link
    Parameter-efficient fine-tuning (PEFT) techniques make it possible to efficiently adapt a language model to create "expert" models that specialize to new tasks or domains. Recent techniques in model merging and compositional generalization leverage these expert models by dynamically composing modules to improve zero/few-shot generalization. Despite the efficiency of PEFT methods, the size of expert models can make it onerous to retrieve expert models per query over high-latency networks like the Internet or serve multiple experts on a single GPU. To address these issues, we present ComPEFT, a novel method for compressing fine-tuning residuals (task vectors) of PEFT based models. ComPEFT employs sparsification and ternary quantization to reduce the size of the PEFT module without performing any additional retraining while preserving or enhancing model performance. In extensive evaluation across T5, T0, and LLaMA-based models with 200M - 65B parameters, ComPEFT achieves compression ratios of 8x - 50x. In particular, we show that ComPEFT improves with scale - stronger models exhibit higher compressibility and better performance. For example, we show that ComPEFT applied to LLaMA outperforms QLoRA by 4.16% on MMLU with a storage size reduction of up to 26x. In addition, we show that the compressed experts produced by ComPEFT maintain few-shot compositional generalization capabilities, facilitate efficient communication and computation, and exhibit enhanced performance when merged. Lastly, we provide an analysis of different method components, compare it with other PEFT methods, and test ComPEFT's efficacy for compressing the residual of full-finetuning. Our code is available at https://github.com/prateeky2806/compeft.Comment: 25 Pages, 6 Figures, 16 Table
    • …
    corecore