4 research outputs found

    Validated stability indicating liquid chromatographic determination of ebastine in pharmaceuticals after pre column derivatization: Application to tablets and content uniformity testing

    Get PDF
    An accurate, simple, sensitive and selective reversed phase liquid chromatographic method has been developed for the determination of ebastine in its pharmaceutical preparations. The proposed method depends on the complexation ability of the studied drug with Zn2+ ions. Reversed phase chromatography was conducted using an ODS C18 (150 × 4.6 mm id) stainless steel column at ambient temperature with UV-detection at 260 nm. A mobile phase containing 0.025%w/v Zn2+ in a mixture of (acetonitril/methanol; 1/4) and Britton Robinson buffer (65:35, v/v) adjusted to pH 4.2, has been used for the determination of ebastine at a flow rate of 1 ml/min. The calibration curve was rectilinear over the concentration range of 0.3 - 6.0 μg/ml with a detection limit (LOD) of 0.13 μg/ml, and quantification limit (LOQ) of 0.26 μg/ml. The proposed method was successfully applied for the analysis of ebastine in its dosage forms, the obtained results were favorably compared with those obtained by a comparison method. Furthermore, content uniformity testing of the studied pharmaceutical formulations was also conducted. The composition of the complex as well as its stability constant was also investigated. Moreover, the proposed method was found to be a stability indicating one and was utilized to investigate the kinetics of alkaline and ultraviolet induced degradation of the drug. The first-order rate constant and half life of the degradation products were calculated

    Validated stability-indicating spectrofluorimetric methods for the determination of ebastine in pharmaceutical preparations

    Get PDF
    Two sensitive, selective, economic, and validated spectrofluorimetric methods were developed for the determination of ebastine (EBS) in pharmaceutical preparations depending on reaction with its tertiary amino group. Method I involves condensation of the drug with mixed anhydrides (citric and acetic anhydrides) producing a product with intense fluorescence, which was measured at 496 nm after excitation at 388 nm

    Stability-indicating spectrofluorimetric method with enhanced sensitivity for determination of vancomycin hydrochloride in pharmaceuticals and spiked human plasma: Application to degradation kinetics

    No full text
    Based on investigating the relative fluorescence intensity of vancomycin hydrochloride (VCM) in methanol, a simple, highly sensitive, time-saving and specific spectrofluorimetric method was developed and validated. VCM fluorescence was measured at 335 nm when excited at 268 nm. Excellent linearity is obeyed in the concentration range 1–100 ng/mL with a detection limit of 5.94 pg/mL, a quantitation limit of 18.03 pg/mL and a very good correlation coefficient (r = 0.9999). Our method was applied to analyze VCM in pharmaceuticals as well as spiked human plasma. Moreover, VCM stability was studied when exposed to various degradation conditions such as oxidative, alkaline as well as acidic stress. Acidic and alkaline degradation kinetics of VCM was studied for the first time. The degradation follows pseudo-first-order kinetics. The apparent rate constants and half-life times were calculated. The Arrhenius equation was assessed and the activation energies of the degradation were also calculated. The developed method can be easily applied in quality control laboratories due to its sensitivity, specificity, simplicity and low cost. Keywords: Vancomycin hydrochloride, Spectrofluorimetry, Dosage form, Human plasma, Stability-indicatin
    corecore