5 research outputs found

    Establishment of FTIR Database of Roselle Raw Material Originated From Western Coastline in Peninsular Malaysia

    Get PDF
    Herbs from different geographical regions may differ qualitatively and quantitatively, hence it is crucial to determine the active components of herbs from different regions and build a reference database. This study focused on the database establishment for the authentication of the raw material of roselle (Hibiscus sabdariffa) collected at seven selected locations of the western coastline in Peninsular Malaysia. The validation on the unknown sample at the end of the study is to verify the accuracy of the established database. The inter-material distance (IMD) was presented as the mean distance of each sphere created by each batch of data from different locations. They were clustered with different folders and discriminated by Soft independent modelling by class analogy (SIMCA) algorithm. All materials from seven farms achieved 100% separation rate. The average IMD of these seven locations was 9.04. The FTIR techniques established in this study can be used to distinguish the geographical origin of the selected H. sabdariffa farm samples

    Determination of anthocyanin content in two varieties of Hibiscus Sabdariffa from Selangor, Malaysia using a combination of chromatography and spectroscopy

    No full text
    The calyces of Hibiscus sabdariffa have been used by many communities as herbal tea. Their anthocyanin contents have been reported as the key component in anti-obesity studies. This present work reported results of anthocyanin content of calyces in two varieties of H. sabdariffa collected from Sabak Bernam, Selangor, Malaysia. The samples have been authenticated in the Herbarium, Institute of Bioscience, University Putra Malaysia prior to the study. The samples were processed and the ground dry raw material and its aqueous extract were analyzed using Fourier Transform Infrared (FTIR) and Two-Dimensional Infrared (2DIR). The short hybrid calyces (FT11-15A) raw material spectrum showed more than 80% similarity with long wild variety calyces (FT11-15B) when using “Compare” in analysis. The differences of both samples were obviously shown in their aqueous extract spectra. The peak at 1672 cm-1 and 841 cm-1 showed that tri-substituted double bond in FT11-15B aqueous extract was not present in FT11-15A aqueous extract spectra, whereby a double peak was assigned at 1221 cm-1 referred to anti symmetry stretching of aromatic and vinyl =C-O-C- with other =C-O- and 1192 cm-1 is assigned In-plane δ C-H in FT11-15A aqueous extract. The peak at 1071 cm-1 assigned as bonding C-H in plane bending of phenyl of both samples was the only peak comparable with standard delphinidin and cyanidin which are used for qualification and quantification of sample content. Aqueous extract spectra of both samples showed higher number of peaks detected compared with raw material spectra, which was attributed to the higher solubility of anthocyanins in water. The 2DIR correlation spectroscopy is advantageous in enhancing the qualitative analysis of herbal products. The anthocyanin content in both varieties of H. sabdariffa in descending amount is delphinidin-3-O-sambubioside (DS), cyanidin-3-O-sambubioside (CS), delphenidin-3-O-glucoside (DG) and lastly cyanidin-3-O-glucoside (CG). FT11-15A has more content of DS and DG of raw material and CG of water extract plus TFA than FT11-15B, whereby, FT11-15B has more content of CS, CG of raw material and DS, DG, CS of water extract plus TFA than FT11-15A

    Analysis of Flavone C

    No full text
    Clinacanthus nutans (family Acanthaceae) has been used for the treatment of inflammation and herpes viral infection. Currently, there has not been any report on the qualitative and quantitative determination of the chemical markers in the leaves of C. nutans. The C-glycosidic flavones such as shaftoside, isoorientin, orientin, isovitexin, and vitexin have been found to be major flavonoids in the leaves of this plant. Therefore, we had developed a two-step method using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC) for the rapid identification and quantification of the flavones C-glycosides in C. nutans leaves. The TLC separation of the chemical markers was achieved on silica gel 60 plate using ethyl acetate : formic acid : acetic acid : water (100 : 11 : 11 : 27 v/v/v/v) as the mobile phase. HPLC method was optimized and validated for the quantification of shaftoside, orientin, isovitexin, and vitexin and was shown to be linear in concentration range tested (0.4–200 μg/mL, r2 ≥ 0.996), precise (RSD ≤ 4.54%), and accurate (95–105%). The concentration of shaftoside, orientin, vitexin, and isovitexin in C. nutans leave samples was 2.55–17.43, 0.00–0.86, 0.00–2.01, and 0.00–0.91 mmol/g, respectively
    corecore