1,574 research outputs found
Spontaneous Parity Violation in SUSY Strong Gauge Theory
We suggest simple models of spontaneous parity violation in supersymmetric
strong gauge theory. We focus on left-right symmetric model and investigate
vacuum with spontaneous parity violation. Non-perturbative effects are
calculable in supersymmetric gauge theory, and we suggest two new models. The
first model shows confinement, and the second model has a dual description of
the theory. The left-right symmetry breaking and electroweak symmetry breaking
are simultaneously occurred with the suitable energy scale hierarchy. The
second model also induces spontaneous supersymmetry breaking.Comment: 14 page
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
Gravitational radiation in quantum gravity
The effective field theory of quantum gravity generically predicts non-locality to be present in the effective action, which results from the low-energy propagation of gravitons and massless matter. Working to second order in gravitational curvature, we reconsider the effects of quantum gravity on the gravitational radiation emitted from a binary system. In particular, we calculate for the first time the leading order quantum gravitational correction to the classical quadrupole radiation formula which appears at second order in Newton’s constant
Lepton Number Violation from Colored States at the LHC
The possibility to search for lepton number violating signals at the Large
Hadron Collider (LHC) in the colored seesaw scenario is investigated. In this
context the fields that generate neutrino masses at the one-loop level are
scalar and Majorana fermionic color-octets of SU(3). Due to the QCD strong
interaction these states may be produced at the LHC with a favorable rate. We
study the production mechanisms and decays relevant to search for lepton number
violation signals in the channels with same-sign dileptons. In the simplest
case when the two fermionic color-octets are degenerate in mass, one could use
their decays to distinguish between the neutrino spectra. We find that for
fermionic octets with mass up to about 1 TeV the number of same-sign dilepton
events is larger than the standard model background indicating a promising
signal for new physics.Comment: minor corrections, added reference
Decoupling property of the supersymmetric Higgs sector with four doublets
In supersymmetric standard models with multi Higgs doublet fields,
selfcoupling constants in the Higgs potential come only from the D-terms at the
tree level. We investigate the decoupling property of additional two heavier
Higgs doublet fields in the supersymmetric standard model with four Higgs
doublets. In particular, we study how they can modify the predictions on the
quantities well predicted in the minimal supersymmetric standard model (MSSM),
when the extra doublet fields are rather heavy to be measured at collider
experiments. The B-term mixing between these extra heavy Higgs bosons and the
relatively light MSSM-like Higgs bosons can significantly change the
predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well
as the mixing angle for the two light CP-even scalar states. We first give
formulae for deviations in the observables of the MSSM in the decoupling region
for the extra two doublet fields. We then examine possible deviations in the
Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in
Journal of High Energy Physic
SUSY, the Third Generation and the LHC
We develop a bottom-up approach to studying SUSY with light stops and
sbottoms, but with other squarks and sleptons heavy and beyond reach of the
LHC. We discuss the range of squark, gaugino and Higgsino masses for which the
electroweak scale is radiatively stable over the "little hierarchy" below ~ 10
TeV. We review and expand on indirect constraints on this scenario, in
particular from flavor and CP tests. We emphasize that in this context,
R-parity violation is very well motivated. The phenomenological differences
between Majorana and Dirac gauginos are also discussed. Finally, we focus on
the light subsystem of stops, sbottom and neutralino with R-parity, in order to
probe the current collider bounds. We find that 1/fb LHC bounds are mild and
large parts of the motivated parameter space remain open, while the 10/fb data
can be much more decisive.Comment: 42 pages, 8 figures, 1 table. V2: minor corrections, references adde
A natural little hierarchy for RS from accidental SUSY
We use supersymmetry to address the little hierarchy problem in
Randall-Sundrum models by naturally generating a hierarchy between the IR scale
and the electroweak scale. Supersymmetry is broken on the UV brane which
triggers the stabilization of the warped extra dimension at an IR scale of
order 10 TeV. The Higgs and top quark live near the IR brane whereas light
fermion generations are localized towards the UV brane. Supersymmetry breaking
causes the first two sparticle generations to decouple, thereby avoiding the
supersymmetric flavour and CP problems, while an accidental R-symmetry protects
the gaugino mass. The resulting low-energy sparticle spectrum consists of
stops, gauginos and Higgsinos which are sufficient to stabilize the little
hierarchy between the IR scale and the electroweak scale. Finally, the
supersymmetric little hierarchy problem is ameliorated by introducing a singlet
Higgs field on the IR brane.Comment: 37 pages, 3 figures; v2: minor corrections, version published in JHE
SUSY Splits, But Then Returns
We study the phenomenon of accidental or "emergent" supersymmetry within
gauge theory and connect it to the scenarios of Split Supersymmetry and Higgs
compositeness. Combining these elements leads to a significant refinement and
extension of the proposal of Partial Supersymmetry, in which supersymmetry is
broken at very high energies but with a remnant surviving to the weak scale.
The Hierarchy Problem is then solved by a non-trivial partnership between
supersymmetry and compositeness, giving a promising approach for reconciling
Higgs naturalness with the wealth of precision experimental data. We discuss
aspects of this scenario from the AdS/CFT dual viewpoint of higher-dimensional
warped compactification. It is argued that string theory constructions with
high scale supersymmetry breaking which realize warped/composite solutions to
the Hierarchy Problem may well be accompanied by some or all of the features
described. The central phenomenological considerations and expectations are
discussed, with more detailed modelling within warped effective field theory
reserved for future work.Comment: 29 pages. Flavor and CP constraints on left-right symmetric structure
briefly discussed. References adde
An Alternative Yukawa Unified SUSY Scenario
Supersymmetric SO(10) Grand Unified Theories with Yukawa unification
represent an appealing possibility for physics beyond the Standard Model.
However Yukawa unification is made difficult by large threshold corrections to
the bottom mass. Generally one is led to consider models where the sfermion
masses are large in order to suppress these corrections. Here we present
another possibility, in which the top and bottom GUT scale Yukawa couplings are
equal to a component of the charged lepton Yukawa matrix at the GUT scale in a
basis where this matrix is not diagonal. Physically, this weak eigenstate
Yukawa unification scenario corresponds to the case where the charged leptons
that are in the 16 of SO(10) containing the top and bottom quarks mix with
their counterparts in another SO(10) multiplet. Diagonalizing the resulting
Yukawa matrix introduces mixings in the neutrino sector. Specifically we find
that for a large region of parameter space with relatively light sparticles,
and which has not been ruled out by current LHC or other data, the mixing
induced in the neutrino sector is such that , in
agreement with data. The phenomenological implications are analyzed in some
detail.Comment: 32 pages, 22 Figure
- …