8,112 research outputs found

    New vector-scalar contributions to neutrinoless double beta decay and constraints on R-parity violation

    Get PDF
    We show that in minimal supersymmetric standard model (MSSM) with R-parity breaking as well as in the left-right symmetric model, there are new observable contributions to neutrinoless double beta decay arising from hitherto overlooked diagrams involving the exchange of one W boson and one scalar boson. In particular, in the case of MSSM, the present experimental bounds on neutrinoless double beta decay lifetime improves the limits on certain R-parity violating couplings by about two orders of magnitude. It is shown that similar diagrams also lead to enhanced rates for μ−→e+\mu^-\rightarrow e^+ conversion in nuclei, which are in the range accessible to ongoing experiments.Comment: Latex file; 9 pages; 3 figures available on reques

    Supernova Constraints on a Superlight Gravitino

    Get PDF
    In supergravity models with low supersymmetry breaking scale the gravitinos can be superlight with mass in the micro-eV to keV range. In such a case, gravitino emission provides a new cooling mechanism for protoneutron stars and therefore can provide constraints on the mass of the superlight gravitino. This happens because the coupling to matter of superlight gravitinos is dominated by its goldstino component, whose coupling to matter is inversely proportional to the scale of supersymmetry breaking and increases as the gravitino mass decreases. Present observations therefore provide lower limits on the gravitino mass. Using recently revised goldstino couplings, we find that the two dominant processes in supernova cooling are e+e−→G~G~e^+e^-\to \tilde{G}\tilde{G} and γ+e−→e−G~G~\gamma+e^-\to e^-\tilde{G}\tilde{G}. They lead to lower limits on the supersymmetry breaking scale ΛS\Lambda_{S} from 160 to 500 GeV for core temperatures 30 to 60 MeV and electron chemical potentials 200 to 300 MeV. The corresponding lower limits on the gravitino mass are .6−6×10−6.6 - 6\times 10^{-6} eV.Comment: Latex 6 pages; one figure; UTEXAS-HEP-97-19, UMD-PP-98-07, SMU-HEP-97-1

    Seesaw Right Handed Neutrino as the Sterile Neutrino for LSND

    Full text link
    We show that a double seesaw framework for neutrino masses with μ−τ\mu-\tau exchange symmetry can lead to one of the righthanded seesaw partners of the light neutrinos being massless. This can play the role of a light sterile neutrino, giving a 3+13+1 model that explains the LSND results. We get a very economical scheme, which makes it possible to predict the full 4×44\times 4 neutrino mass matrix if CP is conserved. Once CP violation is included, effect of the LSND mass range sterile neutrino is to eliminate the lower bound on neutrinoless double beta decay rate which exists for the three neutrino case with inverted mass hierarchy. The same strategy can also be used to generate a natural 3+23+2 model for LSND, which is also equally predictive for the CP conserving case in the limit of exact μ−τ\mu-\tau symmetry.Comment: 13 pages and one figure; model extended to 3+2 cas

    Two Higgs Bi-doublet Model With Spontaneous P and CP Violation and Decoupling Limit to Two Higgs Doublet Model

    Full text link
    The two Higgs bi-doublet left-right symmetric model (2HBDM) as a simple extension of the minimal left-right symmetric model with a single Higgs bi-doublet is motivated to realize both spontaneous P and CP violation while consistent with the low energy phenomenology without significant fine tuning. By carefully investigating the Higgs potential of the model, we find that sizable CP-violating phases are allowed after the spontaneous symmetry breaking. The mass spectra of the extra scalars in the 2HBDM are significantly different from the ones in the minimal left-right symmetric model. In particular, we demonstrate in the decoupling limit when the right-handed gauge symmetry breaking scale is much higher than the electroweak scale, the 2HBDM decouples into general two Higgs doublet model (2HDM) with spontaneous CP violation and has rich induced sources of CP violation. We show that in the decoupling limit, it contains extra light Higgs bosons with masses around electroweak scale, which can be directly searched at the ongoing LHC and future ILC experiments.Comment: 19 pages, discussions on fine-tuning problem added. Version to appear in Phys.Rev.

    Minimal Seesaw as an Ultraviolet Insensitive Cure for the Problems of Anomaly Mediation

    Full text link
    We show that an intermediate scale supersymmetric left-right seesaw scenario with automatic R-parity conservation can cure the problem of tachyonic slepton masses that arises when supersymmetry is broken by anomaly mediation, while preserving ultraviolet insensitivity. The reason for this is the existence of light B - L = 2 higgses with yukawa couplings to the charged leptons. We find these theories to have distinct predictions compared to the usual mSUGRA and gauge mediated models as well as the minimal AMSB models. Such predictions include a condensed gaugino mass spectrum and possibly a correspondingly condensed sfermion spectrum.Comment: 19 pages, 1 figur

    MeV Right-handed Neutrinos and Dark Matter

    Get PDF
    We consider the possibility of having a MeV right-handed neutrino as a dark matter constituent. The initial reason for this study was the 511 keV spectral line observed by the satellite experiment INTEGRAL: could it be due to an interaction between dark matter and baryons? Independently of this, we find a number of constraints on the assumed right-handed interactions. They arise in particular from the measurements by solar neutrino experiments. We come to the conclusion that such particles interactions are possible, and could reproduce the peculiar angular distribution, but not the rate of the INTEGRAL signal. However, we stress that solar neutrino experiments are susceptible to provide further constraints in the future.Comment: 7 pages, figure 1 changed, added reference

    Effects of e−e+νee^- e^+ \nu_e Decays of Tau Neutrinos Near A Supernova

    Full text link
    We revisit the constraints implied by SN 1987 A observations on the decay rate of a multi-MeV ντ\nu_\tau decaying into the visible channel ντ→e+e−νe\nu_\tau \rightarrow e^+ e^- \nu_e, if its lifetime is more than 10 {\it sec.}. We discuss its implication for the minimal left-right symmetric model with see-saw mechanism for neutrino masses. We also speculate on the possible formation of a ``giant Capacitor" in intergalactic space due to the decay of "neutronization" ντ\nu_\tau's and spin allignment possibility in the supernova.Comment: 29 Pages, Tex file, UMDHEP 94-4

    Searching for Strongly Interacting Massive Particles (SIMPs)

    Get PDF
    We consider laboratory experiments that can detect stable, neutral strongly interacting massive particles (SIMPs). We explore the SIMP annihilation cross section from its minimum value (restricted by cosmological bounds) to the barn range, and vary the mass values from a GeV to a TeV. We calculate, as a function of the SIMP-nucleon cross section, the minimum nucleon number A for which there should be binding in a nucleus. We consider accelerator mass spectrometry with a gold (A=200) target, and compute the likely abundance of anomalous gold nuclei if stable neutral SIMPs exist. We also consider the prospects and problems of detecting such particles at the Tevatron. We estimate optimistically that such detection might be possible for SIMPs with SIMP-nucleon cross sections larger than 0.1 millibarn and masses between 25 and 50 GeV.Comment: RevTeX, 10 pages, 3 figures; Minor updates to match published versio
    • …
    corecore