7 research outputs found

    Exploring the QCD landscape with high-energy nuclear collisions

    Full text link
    Quantum chromodynamics (QCD) phase diagram is usually plotted as temperature (T) versus the chemical potential associated with the conserved baryon number (\mu_{B}). Two fundamental properties of QCD, related to confinement and chiral symmetry, allows for two corresponding phase transitions when T and \mu_{B} are varied. Theoretically the phase diagram is explored through non-perturbative QCD calculations on lattice. The energy scale for the phase diagram (\Lambda_{QCD} ~ 200 MeV) is such that it can be explored experimentally by colliding nuclei at varying beam energies in the laboratory. In this paper we review some aspects of the QCD phase structure as explored through the experimental studies using high energy nuclear collisions. Specifically, we discuss three observations related to the formation of a strongly coupled plasma of quarks and gluons in the collisions, experimental search for the QCD critical point on the phase diagram and freeze-out properties of the hadronic phase.Comment: Submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas

    A study on the anomaly of pp over π\pi ratios in Au+AuAu+Au collisions with jet quenching

    Full text link
    The ratios of p/πp/\pi at large transverse momentum in central Au+AuAu+Au collisions at RHIC are studied in the framework of jet quenching based on a next-to-leading order pQCD parton model. It is shown that theoretical calculations with a gluon energy loss larger than the quark energy loss will naturally lead to a smaller p/πp/\pi ratios at large transverse momentum in Au+AuAu+Au collisions than those in p+pp+p collisions at the same energy. Scenarios with equal energy losses for gluons and quarks and a strong jet conversion are both explored and it is demonstrated in both scenarios p/πp/\pi ratios at high pTp_T in central Au+AuAu+Au collisions are enhanced and the calculated ratios of protons over pions approach to the experimental measurements. However, pˉ/p{\bar p}/p in the latter scenario is found to fit data better than that in the former scenario.Comment: 20 pages, 13 figures; revised version; accepted for publication in Journal of Physics

    Extrapolation of Multiplicity distribution in p+p(\bar(p)) collisions to LHC energies

    Full text link
    The multiplicity (N_ch) and pseudorapidity distribution (dN_ch/d\eta) of primary charged particles in p+p collisions at Large Hadron Collider (LHC) energies of \sqrt(s) = 10 and 14 TeV are obtained from extrapolation of existing measurements at lower \sqrt(s). These distributions are then compared to calculations from PYTHIA and PHOJET models. The existing \sqrt(s) measurements are unable to distinguish between a logarithmic and power law dependence of the average charged particle multiplicity () on \sqrt(s), and their extrapolation to energies accessible at LHC give very different values. Assuming a reasonably good description of inclusive charged particle multiplicity distributions by Negative Binomial Distributions (NBD) at lower \sqrt(s) to hold for LHC energies, we observe that the logarithmic \sqrt(s) dependence of are favored by the models at midrapidity. The dN_ch/d\eta versus \eta for the existing measurements are found to be reasonably well described by a function with three parameters which accounts for the basic features of the distribution, height at midrapidity, central rapidity plateau and the higher rapidity fall-off. Extrapolation of these parameters as a function of \sqrt(s) is used to predict the pseudorapidity distributions of charged particles at LHC energies. dN_ch/d\eta calculations from PYTHIA and PHOJET models are found to be lower compared to those obtained from the extrapolated dN_ch/d\eta versus \eta distributions for a broad \eta range.Comment: 11 pages and 13 figures. Substantially revised and accepted for publication in Journal of Physics

    STAR results on medium properties and response of the medium to energetic partons

    Full text link
    We report new STAR results on the consequences of highly energetic partons propagating through the medium formed in heavy ion collisions using correlations as an experimental probe. The recent results providing insights about color factor effects and path length dependence of parton energy loss, system size dependence of di-hadron fragmentation functions, conical emission and ridge formation in heavy ion collisions are presented.Comment: STAR Plenary talk at QM2008. Manuscript for the Proceedings of Quark Matter 2008, Jaipur, Indi
    corecore