21 research outputs found

    Proteomic Profiling of Small-Cell Lung Cancer:A Systematic Review

    Get PDF
    The accurate diagnosis of small-cell lung cancer (SCLC) is crucial, as treatment strategies differ from those of other lung cancers. This systematic review aims to identify proteins differentially expressed in SCLC compared to normal lung tissue, evaluating their potential utility in diagnosing and prognosing the disease. Additionally, the study identifies proteins differentially expressed between SCLC and large cell neuroendocrine carcinoma (LCNEC), aiming to discover biomarkers distinguishing between these two subtypes of neuroendocrine lung cancers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search was conducted across PubMed/MEDLINE, Scopus, Embase, and Web of Science databases. Studies reporting proteomics information and confirming SCLC and/or LCNEC through histopathological and/or cytopathological examination were included, while review articles, non-original articles, and studies based on animal samples or cell lines were excluded. The initial search yielded 1705 articles, and after deduplication and screening, 16 articles were deemed eligible. These studies revealed 117 unique proteins significantly differentially expressed in SCLC compared to normal lung tissue, along with 37 unique proteins differentially expressed between SCLC and LCNEC. In conclusion, this review highlights the potential of proteomics technology in identifying novel biomarkers for diagnosing SCLC, predicting its prognosis, and distinguishing it from LCNEC.</p

    Unveiling the therapeutic potential of exogenous β-hydroxybutyrate for chronic colitis in rats: novel insights on autophagy, apoptosis, and pyroptosis

    Get PDF
    Ulcerative colitis (UC) is a chronic relapsing inflammatory disease of the colorectal area that demonstrates a dramatically increasing incidence worldwide. This study provides novel insights into the capacity of the exogenous β-hydroxybutyrate and ketogenic diet (KD) consumption to alleviate dextran sodium sulfate (DSS)-induced UC in rats. Remarkably, both interventions attenuated disease activity and colon weight-to-length ratio, and improved macro and microstructures of the damaged colon. Importantly, both β-hydroxybutyrate and KD curbed the DSS-induced aberrant NLRP3 inflammasome activation as observed in mRNA and protein expression analysis. Additionally, inhibition of the NLRP3/NGSDMD-mediated pyroptosis was detected in response to both regimens. In parallel, these modalities attenuated caspase-1 and its associated consequences of IL-1β and IL-18 overproduction. They also mitigated apoptosis as indicated by the inactivation of caspase-3. The anti-inflammatory effects of BHB and KD were confirmed by the reported decline in the levels of inflammatory markers including MPO, NFκB, IL-6, and TNF-α. Moreover, these interventions exhibited antioxidative properties by reducing ROS production and improving antioxidative enzymes. Their effectiveness in mitigating UC was also evident in the renovation of normal intestinal epithelial barrier function, as shown by correcting the discrepancies in the levels of tight junction proteins ZO-1, OCLN, and CLDN5. Furthermore, their effects on the intestinal microbiota homeostasis were investigated. In terms of autophagy, exogenous β-hydroxybutyrate upregulated BECN-1 and downregulated p62, which may account for its superiority over KD in attenuating colonic damage. In conclusion, this study provides experimental evidence supporting the potential therapeutic use of β-hydroxybutyrate or β-hydroxybutyrate-boosting regimens in UC

    Novel architectures for MEMS inertial sensors and resonators targeting above-IC integration

    No full text
    The importance of micromachined sensors and resonators is continuously increasing as they get more widespread in a broad variety of applications ranging from handheld consumer electronics to more sophisticated applications as robotics and space applications. This is pushing research in all aspects of microsystems to produce higher performance lower cost devices to cope with the increasing demand. In this work, architectures for improving the performance of different types of MEMS inertial, magnetic sensors (targeting inertial combos) and resonators (targeting MEMS oscillators) are presented. Also, a low temperature surface micromachining technology featuring independently controlled lateral and vertical gaps targeted for the fabrication of capacitive sensors and resonators above-IC is illustrated.A novel method for enhancing the sensitivity of bulk mode gyroscopes and resonators is presented. It is based on adding parallel plate comb drives with tuned stiffness to the points of maximum vibration amplitude for optimal driving and sensing of the disk's vibrational modes. Fabricated Prototypes were measured to operate at frequencies of ~1.5 MHz, with quality factors of up to ~33,000, and exhibit a rate sensitivity of 0.43 aF/°/s/electrode, two orders of magnitude higher than a similar design without combs that was also fabricated in the same technology. A combined magnetometer / accelerometer design based on the Lorentz force is introduced, where an electrical current is switched between two orthogonal directions on the device structure to achieve a 2D in-plane magnetic field measurement. The device can concurrently serve as a 1D accelerometer for out-of-plane acceleration, when the current is switched off. The device is fabricated using a low temperature SiC surface micromachining technology, which is fully adapted for above-IC integration on standard CMOS substrates. Measurement results from the fabricated device show a magnetic field sensitivity of 1.57 pF/T and an acceleration sensitivity of 1.02 fF/g. A wine-glass bulk mode disk resonator based on a novel transverse piezoelectric actuation technique, which does not require any DC voltage for operation, to achieve bulk mode resonance of the single crystalline silicon disk structure is presented. The device is fabricated in a commercial MEMS process and thus combines reasonable quality factor and superior motional resistance in a low-cost technology. External capacitive electrodes are used for optional electrostatic tuning of the frequency. Fabricated devices were measured to have resonance frequencies of ~15 MHz and quality factors as high as ~5,000. The first surface micromachining technology based on amorphous silicon carbide (a-SiC) for above-IC integration of capacitive devices featuring independently controlled submicron lateral and vertical transduction gaps is presented. Processing is optimized for full compatibility with commercial CMOS processes, with the lowest reported fabrication temperature (&lt;200 oC) amongst comparable technologies. DC sputtered a-SiC structural layers with superior mechanical properties are used. Two polymer-based sacrificial layers define the vertical and sub-micron lateral gaps, without requiring high resolution photolithography, and are ultimately dry released to prevent stiction, a challenging issue with wet methods. Devices including disk resonators and disk gyroscopes were fabricated and resonance frequencies up to 25 MHz with quality factors up to 1,200 were measured.By combining our low-temperature CMOS compatible micromachining technology with the novel MEMS architectures for sensors and resonators presented, fully-integrated high-performance batch fabricated systems can be brought to market.Les capteurs micro-usinés et ainsi que les micro-résonateurs génèrent de plus en plus d'intérêt car ceux-ci deviennent plus répandus dans une large variété d'applications, allant des systèmes électroniques portables, de la robotique ou dans des applications spatiales. Cette demande croissante pousse la recherche dans tous les aspects des microsystèmes pour produire des dispositifs plus performants à moindre coûts. Dans ce travail, des architectures pour améliorer la performance des différents types de microsystèmes électromécaniques (MEMS) ciblant les capteurs combinant plusieurs capteurs inertiels et les oscillateurs MEMS sont présentés. En outre, une technologie de micro-fabrication de surface à basse température avec des interstices latéraux et verticaux fixés indépendamment et ciblée pour la fabrication de capteurs et résonateurs capacitifs intégrés est illustrée.Ce travail introduit une nouvelle architecture pour augmenter la sensibilité des micro-gyroscopes. La structure est basée sur l'ajout de peignes à plaques parallèles aux points d'amplitude maximale de vibration, ce qui augmente l'efficacité du gyroscope. Les prototypes ont été mesurés fonctionnant à des fréquences d'environ 1.5 MHz, avec des facteurs de qualité allant jusqu'à ~ 33,000, et présentant une sensibilité à la rotation de 0.43 aF/°/s/électrode, deux ordres de grandeur supérieurs aux dispositifs conventionnels fabriqués dans la même technologie.Une conception d'un magnétomètre / accéléromètre combiné basé sur la force de Lorentz est faite, où un courant électrique est commuté entre deux directions orthogonales sur la structure pour mesurer le champ magnétique dans le plan. Le dispositif peut mesurer l'accélération hors-plan en même temps, lorsque le courant est coupé. Le dispositif est fabriqué en utilisant une technologie de micro-fabrication de surface en carbure de silicium (SiC) à basse température et qui est tout à fait adaptée pour l'intégration sur des substrats CMOS standard. Les résultats de mesure des dispositifs fabriqués montrent une sensibilité de champ magnétique de 1.57 pF/T et une sensibilité à l'accélération de 1.02 fF/g.De plus, un résonateur novateur en forme de disque de type wine-glass est présenté. Celui-ci est basé sur une technique novatrice d'actionnement transversal piézo-électrique permettant d'obtenir une résonance de la structure en mode massique sans nécessiter de tension DC pour le fonctionnement. Le dispositif est fabriqué dans un processus MEMS commercial et combine un facteur de qualité raisonnable et une résistance d'insertion plus faible. Des électrodes capacitives externes sont utilisées pour le réglage électrostatique de la fréquence de résonance. Une fréquence de résonance de ~ 15 MHz et un facteur de qualité de ~5000 ont été mesurés. Est aussi présentée la première technologie de micro-fabrication de surface à base de carbure de silicium amorphe (a-SiC) pour intégration avec des circuits intégrés pour l'implémentation de dispositifs capacitifs comportant des interstices submicroniques verticaux et latéraux contrôlés de façon indépendante. Le procédé de fabrication est optimisé pour être compatible avec les procédés commerciaux de fabrication CMOS car la température de fabrication du procédé présentée (&lt;200 oC) est la plus basse rapportée parmi les technologies comparables. Des couches structurelles de a-SiC possédant des propriétés mécaniques supérieures sont utilisées. Deux couches sacrificielles de polymère définissent les interstices verticaux et latéraux, sans nécessiter de photolithographie à haute résolution. Plusieurs dispositifs y compris des résonateurs et gyroscopes en forme de disques ont été fabriqués et des fréquences de résonance jusqu'à 25 MHz avec des facteurs de qualité jusqu'à 1200 ont été mesurés.En combinant notre technologie de micro-fabrication avec les nouvelles architectures de MEMS présentés, des systèmes à haute performance entièrement intégrés peuvent être mis sur le marché

    Piezoelectric Bulk Mode Disk Resonator Post-Processed for Enhanced Quality Factor Performance

    No full text

    A Novel Comb Architecture for Enhancing the Sensitivity of Bulk Mode Gyroscopes

    Get PDF
    This work introduces a novel architecture for increasing the sensitivity of bulk mode gyroscopes. It is based on adding parallel plate comb drives to the points of maximum vibration amplitude, and tuning the stiffness of the combs. This increases the drive strength and results in a significant sensitivity improvement. The architecture is targeted for technologies with ~100 nm transducer gaps in order to achieve very high performance devices. In this work, this sensitivity enhancement concept was implemented in SOIMUMPs, a commercial relatively large gap technology. Prototypes were measured to operate at frequencies of ~1.5 MHz, with quality factors of ~33,000, at a 10 mTorr vacuum level. Measurements using discrete electronics show a rate sensitivity of 0.31 μV/°/s, corresponding to a capacitance sensitivity of 0.43 aF/°/s/electrode, two orders of magnitude higher than a similar design without combs, fabricated in the same technology

    A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    No full text
    [abstract not available
    corecore