88 research outputs found

    Role of defensins in the pathogenesis of chronic lung allograft rejection

    Get PDF
    Chronic rejection predominantly manifested as bronchiolitis obliterans syndrome (BOS), still remains a major problem affecting long-term outcomes in human lung transplantation (LTx). Donor specific antibodies (DSA) and infiltration of neutrophils in the graft have been associated with the development of BOS. This study determines the role of defensins, produced by neutrophils, and its interaction with α-1-antitrypsin (AAT) towards induction of airway inflammation and fibrosis which are characteristic hallmarks of BOS. Bronchoalveolar lavage (BAL) and serum from LTx recipients, BOS+ (n=28), BOS− (n=26) and normal healthy controls (n=24) were analyzed. Our results show that BOS+ LTx recipients had higher α-defensins (HNP1–3) and β-defensin2 HBD2 concentration in BAL and serum compared to BOS-DSA-recipients and normal controls (p=0.03). BOS+ patients had significantly lower serum AAT along with higher circulating concentration of HNP–AAT complexes in BAL (p=0.05). Stimulation of primary small airway epithelial cells (SAECs) with HNPs induced expression of HBD2, adhesion molecules (ICAM and VCAM), cytokines (IL-6, IL-1β, IL-13, IL-8 and MCP-1) and growth-factor (VEGF and EGF). In contrast, anti-inflammatory cytokine, IL-10 expression decreased 2-fold (p=0.002). HNPs mediated SAEC activation was completely abrogated by AAT. In conclusion, our results demonstrates that neutrophil secretory product, α-defensins, stimulate β-defensin production by SAECs causing upregulation of pro-inflammatory and pro-fibrotic signaling molecules. Hence, chronic stimulation of airway epithelial cells by defensins can lead to inflammation and fibrosis the central events in the development of BOS following LTx

    ATHLATES: accurate typing of human leukocyte antigen through exome sequencing

    Get PDF
    Human leukocyte antigen (HLA) typing at the allelic level can in theory be achieved using whole exome sequencing (exome-seq) data with no added cost but has been hindered by its computational challenge. We developed ATHLATES, a program that applies assembly, allele identification and allelic pair inference to short read sequences, and applied it to data from Illumina platforms. In 15 data sets with adequate coverage for HLA-A, -B, -C, -DRB1 and -DQB1 genes, ATHLATES correctly reported 74 out of 75 allelic pairs with an overall concordance rate of 99% compared with conventional typing. This novel approach should be broadly applicable to research and clinical laboratories

    Development and Optimization of an ELISA to Quantitate C3(H2O) as a Marker of Human Disease

    Get PDF
    Discovery of a C3(H2O) uptake pathway has led to renewed interest in this alternative pathway triggering form of C3 in human biospecimens. Previously, a quantifiable method to measure C3(H2O), not confounded by other complement activation products, was unavailable. Herein, we describe a sensitive and specific ELISA for C3(H2O). We initially utilized this assay to determine baseline C3(H2O) levels in healthy human fluids and to define optimal sample storage and handling conditions. We detected ~500 ng/ml of C3(H2O) in fresh serum and plasma, a value substantially lower than what was predicted based on previous studies with purified C3 preparations. After a single freeze-thaw cycle, the C3(H2O) concentration increased 3- to 4-fold (~2,000 ng/ml). Subsequent freeze-thaw cycles had a lesser impact on C3(H2O) generation. Further, we found that storage of human sera or plasma samples at 4°C for up to 22 h did not generate additional C3(H2O). To determine the potential use of C3(H2O) as a biomarker, we evaluated specimens from patients with inflammatory-driven diseases. C3(H2O) concentrations were moderately increased (1.5- to 2-fold) at baseline in sera from active systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to healthy controls. In addition, upon challenge with multiple freeze-thaw cycles or incubation at 22 or 37°C, C3(H2O) generation was significantly enhanced in SLE and RA patients' sera. In bronchoalveolar lavage fluid from lung-transplant recipients, we noted a substantial increase in C3(H2O) within 3 months of acute antibody-mediated rejection. In conclusion, we have established an ELISA for assessing C3(H2O) as a diagnostic and prognostic biomarker in human diseases

    Targeting chromatin dysregulation in organ fibrosis

    No full text
    Fibrosis leads to destruction of organ architecture accompanied by chronic inflammation and loss of function. Fibrosis affects nearly every organ in the body and accounts for ∼45% of total deaths worldwide. Over the past decade, tremendous progress has been made in understanding the basic mechanisms leading to organ fibrosis. However, we are limited with therapeutic options and there is a significant need to develop highly effective anti-fibrotic therapies. Recent advances in sequencing technologies have advanced the burgeoning field of epigenetics towards molecular understanding at a higher resolution. Here we provide a comprehensive review of the recent advances in chromatin regulatory processes, specifically DNA methylation, post-translational modification of histones, and chromatin remodeling complexes in kidney, liver and lung fibrosis. Although this research field is young, we discuss new strategies for potential therapeutic interventions for treating organ fibrosis
    • …
    corecore