4 research outputs found

    Optimizing multi-antenna M-MIMO DM communication systems with advanced linearization techniques for RF front-end nonlinearity compensation in a comprehensive design and performance evaluation study

    Get PDF
    The study presented in this research focuses on linearization strategies for compensating for nonlinearity in RF front ends in multi-antenna M-MIMO OFDM communication systems. The study includes the design and evaluation of techniques such as analogue pre-distortion (APD), crest factor reduction (CFR), multi-antenna clipping noise cancellation (M-CNC), and multi-clipping noise cancellation (MCNC). Nonlinearities in RF front ends can cause signal distortion, leading to reduced system performance. To address this issue, various linearization methods have been proposed. This research examines the impact of antenna correlation on power amplifier efficiency and bit error rate (BER) of transmissions using these methods. Simulation studies conducted under high signal-to-noise ratio (SNR) regimes reveal that M-CNC and MCNC approaches offer significant improvement in BER performance and PA efficiency compared to other techniques. Additionally, the study explores the influence of clipping level and antenna correlation on the effectiveness of these methods. The findings suggest that appropriate linearization strategies should be selected based on factors such as the number of antennas, SNR, and clipping level of the system

    Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks

    Get PDF
    The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical energy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute parameters of electrical energy consumption. The method considers the timeseries homes of the information and offers parallelization of large-scale facts processing with magnificent operational efficiency, considering the timeseries aspects of the information and the problematic inherent correlations between variables. The exams have been done using the UCI public dataset, and the experimental findings validate the method's efficacy, which has clear, sensible implications for setting up intelligent strength grid dispatching

    Developed cluster-based load-balanced protocol for wireless sensor networks based on energy-efficient clustering

    No full text
    One of the most pressing issues in wireless sensor networks (WSNs) is energy efficiency. Sensor nodes (SNs) are used by WSNs to gather and send data. The techniques of cluster-based hierarchical routing significantly considered for lowering WSN’s energy consumption. Because SNs are battery-powered, face significant energy constraints, and face problems in an energy-efficient protocol designing. Clustering algorithms drastically reduce each SNs energy consumption. A low-energy adaptive clustering hierarchy (LEACH) considered promising for application-specifically protocol architecture for WSNs. To extend the network's lifetime, the SNs must save energy as much as feasible. The proposed developed cluster-based loadbalanced protocol (DCLP) considers for the number of ideal cluster heads (CHs) and prevents nodes nearer base stations (BSs) from joining the cluster realization for accomplishing sufficient performances regarding the reduction of sensor consumed energy. The analysis and comparison in MATLAB to LEACH, a well-known cluster-based protocol, and its modified variant distributed energy efficient clustering (DEEC). The simulation results demonstrate that network performance, energy usage, and network longevity have all improved significantly. It also demonstrates that employing cluster-based routing protocols may successfully reduce sensor network energy consumption while increasing the quantity of network data transfer, hence achieving the goal of extending network lifetime

    Community Aware Recommendation System with Explicit and Implicit Link Prediction

    No full text
    Recommendation systems are essential tools that help users discover content they may be interested in, amidst the vast amount of information available online. However, current methods, such as using historical user-item interactions and collaborative filtering, have limitations in accurately predicting user preferences. Our research aims to address these challenges and improve the performance of recommendation systems. In this article, we propose a new approach to recommendation systems using a method called Probabilistic Matrix Factorization (PMF). We transform the standard PMF method into a communitybased PMF that takes into account implicit relationships between users and items. To achieve this, we use a machine learning technique called Reduced Kernel Extreme Learning Machine (RKELM). Our proposed framework is designed to integrate these implicit relationships and identify communities of users with similar preferences based on PMF. We conducted a comparative analysis of our newly developed model against existing methods, using two well-known datasets. Various performance metrics, such as prediction errors, were employed to evaluate the effectiveness of our proposed community-based PMF approach with RKELM. Our model demonstrates improved performance, achieving a 7% improvement for the Douban dataset and a 4% improvement for the Last.fm dataset. Despite the improvements demonstrated by our model, potential limitations and challenges may still exist, such as scalability to larger datasets or adaptability to different domains. Future work could explore these aspects and investigate further enhancements to our approach
    corecore