12 research outputs found

    Graphene Oxide-based Endodontic Sealer: An in Vitro Study

    Get PDF
    The failure of endodontic treatment is directly associated with microbial infection in the root canal or periapical areas. An endodontic sealer that is both bactericidal and biocompatible is essential for the success of root canal treatments. This is one of the vital issues yet to be solved in clinical dental practice. This in vitro study assessed the effectiveness of graphene oxide (GO) composites GO-CaF2 and GO-Ag-CaF2 as endodontic sealer materials. Dentin slices were coated with either the GO-based composites or commonly used root canal sealers (non-eugenol zinc oxide sealer). The coated slices were treated in 0.9% NaCl, phosphate-buffered saline (PBS), and simulated body fluid (SBF) at 37˚C for 24 hours to compare their sealing effect on the dentin surface. In addition, the radiopacity of these composites was examined to assess whether they complied with the requirements of a sealer for good radiographic visualization. Scanning electron microscopy showed the significant sealing capability of the composites as coating materials. Radiographic images confirmed their radiopacity. Mineral deposition indicated their bioactivity, especially of GO-Ag-CaF2, and thus it is potential for regenerative application. They were both previously shown to be bactericidal to oral microbes and cytocompatible with host cells. With such a unique assemblage of critical properties, these GO-based composites show promise as endodontic sealers for protection against reinfection in root canal treatment and enhanced success in endodontic treatment overall

    Recent Advances in Apical Periodontitis Treatment: A Narrative Review

    Get PDF
    Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches

    Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review

    No full text
    Nanoparticles based on metal and metallic oxide have become a novel trend for dental use as they interfere with bacterial metabolism and prevent biofilm formation. Metal and metal oxide nanoparticles demonstrate significant antimicrobial activity by metal ion release, oxidative stress induction and non-oxidative mechanisms. Silver, zinc, titanium, copper, and magnesium ions have been used to develop metal and metal oxide nanoparticles. In addition, fluoride has been used to functionalise the metal and metal oxide nanoparticles. The fluoride-functionalised nanoparticles show fluoride-releasing properties that enhance apatite formation, promote remineralisation, and inhibit demineralisation of enamel and dentine. The particles’ nanoscopic size increases their surface-to-volume ratio and bioavailability. The increased surface area facilitates their mechanical bond with tooth tissue. Therefore, metal and metal oxide nanoparticles have been incorporated in dental materials to strengthen the mechanical properties of the materials and to prevent caries development. Another advantage of metal and metal oxide nanoparticles is their easily scalable production. The aim of this study is to provide an overview of the use of metal and metal oxide nanoparticles in caries prevention. The study reviews their effects on dental materials regarding antibacterial, remineralising, aesthetic, and mechanical properties

    Challenge-Based Learning in Dental Education

    No full text
    Challenge-based learning (CBL) is a novel learning framework for a collaborative and multidisciplinary learning experience. It allows students, teachers, stakeholders, researchers, families, and society to work together to identify and solve real-world challenges. CBL helps students develop a deeper knowledge of the subjects they are studying. The concepts of CBL originate from a variety of educational theories and approaches, such as problem-based learning and inquiry-based learning. The precursor to the CBL framework is problem-based learning. However, unlike in problem-based learning and other approaches, students formulate the challenges they will address in CBL. Furthermore, students need to create a solution resulting in concrete action. CBL takes into account the social impact of an idea rather than just the corporate benefits. Therefore, it can help students expand the scope and depth of learning, encourage teamwork capabilities, and raise their awareness about considering quality and ethics in decision-making. CBL is implemented in universities, schools, and institutions worldwide and its use is well-recognized in science, engineering, and medicine, but it has not been translated into dentistry. The aim of this paper is to describe the concept of inclusion, principles and design, implementation, and supervision of the CBL framework in a dental course for the adaption of this learning framework to dental education

    Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review

    No full text
    Nanoparticles based on metal and metallic oxide have become a novel trend for dental use as they interfere with bacterial metabolism and prevent biofilm formation. Metal and metal oxide nanoparticles demonstrate significant antimicrobial activity by metal ion release, oxidative stress induction and non-oxidative mechanisms. Silver, zinc, titanium, copper, and magnesium ions have been used to develop metal and metal oxide nanoparticles. In addition, fluoride has been used to functionalise the metal and metal oxide nanoparticles. The fluoride-functionalised nanoparticles show fluoride-releasing properties that enhance apatite formation, promote remineralisation, and inhibit demineralisation of enamel and dentine. The particles’ nanoscopic size increases their surface-to-volume ratio and bioavailability. The increased surface area facilitates their mechanical bond with tooth tissue. Therefore, metal and metal oxide nanoparticles have been incorporated in dental materials to strengthen the mechanical properties of the materials and to prevent caries development. Another advantage of metal and metal oxide nanoparticles is their easily scalable production. The aim of this study is to provide an overview of the use of metal and metal oxide nanoparticles in caries prevention. The study reviews their effects on dental materials regarding antibacterial, remineralising, aesthetic, and mechanical properties

    Enhancing the Physical, Antimicrobial, and Osteo/Odontogenic Properties of a Sol–Gel-Derived Tricalcium Silicate by Graphene Oxide for Vital Pulp Therapies

    No full text
    Objectives: This study developed a sol–gel tricalcium silicate/graphene oxide (TCS-GO) composite and examined its physicochemical properties, antimicrobial activity, and osteo/odontogenic effect on dental pulp stem cells. Methods: Tricalcium silicate was synthesized and combined with graphene oxide at three different concentrations, namely 0.02%, 0.04%, and 0.08% w/w, while tricalcium silicate and mineral trioxide aggregate served as controls. The setting time, compressive strength, pH, and calcium ion release of the composites were evaluated, as well as antimicrobial properties against Streptococcus mutans and Lactobacillus acidophilus. Additionally, the viability of dental pulp stem cells; apatite forming ability; and the gene expression of Alkaline phosphatase, Dentin sialophosphoprotein, and Runt-related transcription factor 2 were assessed. Results: TCS-GO (0.08%) showed a significantly shorter setting time and higher compressive strength when compared to MTA (p p < 0.05). ALP expression was higher in TCS-GO (0.08%) than MTA on days 3 and 7, while DSPP expression was higher in TCS-GO (0.08%) than MTA on day 3 but reversed on day 7. There was no significant difference in RUNX2 expression between TCS-GO (0.08%) and MTA on days 3 and 7. Conclusions: The TCS-GO (0.08%) composite demonstrated superior physicochemical characteristics and antimicrobial properties compared to MTA. Moreover, the early upregulation of ALP and DSPP markers in TCS-GO (0.08%) indicates that it has the potential to promote and enhance the osteo/odontogenic differentiation of DPSCs
    corecore