10 research outputs found

    Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years

    Full text link
    peer reviewedClimate change is one of the major risks facing developing countries in Africa for which agriculture is a predominant part in the economy. Alterations in rainfall patterns and increasing temperatures projected by the Intergovernmental Panel on Climate Change (IPCC) could lead to a decline in agricultural production in many areas requiring significant changes in agricultural practices and land distribution. The study provided estimates of the economic impacts of climate change, compared these with historical impacts of drought spells, and estimated the extent to which the current Moroccan agricultural development and investment strategy, the Plan Maroc Vert, helps in agricultural adaptation to climate change and uncertainty. The aim of this study was to quantify the effects of climate change on the overall economy by using an integrated framework incorporating a computable general equilibrium model. A concomitant factor to climate change will be the increase in population and its distribution and level of consumption, which will also influence agricultural production strategies, the conversion of agricultural land, the type of irrigation, and technological development. We demonstrated how changes in cereal production and area, affluence, and climate (rainfall and temperature) can be acquired for 12 regions of Morocco and used to develop and validate an earth system model in relation to the environment and socio-economic level, which projects their impact on current and potential land use over the next 20 years. We used different mathematical equations based on cereal area and production, population, consumption (kg/person), and change in climate (temperature and rainfall) in bour and irrigated areas for the growing season of 2014 in 12 regions to project agricultural land use over the next 20 years. Therefore, several possible scenarios were investigated to explore how variations in climate change, socio-economic level, and technological development will affect the future of agricultural land use over the next 20 years, which in turn could have important implications for human well-being. Among the 12 Moroccan regions, only 4 had a surplus of cereal production compared to their local consumption. The increase in population will generate a cereal deficit in 2024 and 2034, thus lowering the average annual quantity available per capita of cereals from 204.75 to 160.61 kg/p in 2014 and 2034, respectively. Therefore, it is necessary to reduce the amount of cereals per person by 5 kg/p and 25 kg/p so that the 2014 production could satisfy the population projected in 2024 and 2034. We found that cereal production will decrease with increasing temperature and decreasing precipitation according to the simulated scenarios, which might not satisfy the growing population in 2024 and 2034. This study provides a practical tool that can be used to provide policy makers with advice on food security assurance policy based on our current knowledge of the impending onset of climate change, including socio-economic statistics and the agricultural constraints of cereals in the 12 regions of Morocco

    Analysis of the Vulnerability of Agriculture to Climate and Anthropogenic Impacts in the Beni Mellal-Khénifra Region, Morocco

    Full text link
    peer reviewedClimate change (CC) is a significant concern for many climate-sensitive socio-economic sectors, such as agriculture and food production. The current study aimed at analyzing the current vulnerability of the Moroccan agricultural sector to CC and anthropogenic impact and identifying the relevant vulnerability factors in the Beni Mellal-Khénifra region. In this regard, a multidisciplinary approach was used to assess the vulnerability. To do this, an index based on five components was designed, including climate, plant production, animal production, geography, and anthropogenic aspects. The numerical model has benefited from data retrieved from three recognized indices such as Normalized Difference Vegetation Index (NDVI), Standardized Precipitation Index (SPI), and Vegetation Condition Index (VCI), and from the reported data of the agricultural, environmental, and socio-economic governmental departments. The results showed that there was a significant vulnerability of all the five components to CC. Particularly, the province of Azilal was the most vulnerable, followed by Khénifra, Fquih Ben Salah, and Beni Mellal, while Khouribga was the least vulnerable. These components might help to determine the mechanisms and priority sectors, the most vulnerable to CC and anthropogenic effects, to take urgent measures. These may guide decision makers to carry out effective actions, namely, the amounts to be spent to mitigate this vulnerability. It will also make it possible to know where, when, and how the adaptation should take place

    L'adaptation au changement climatique dans le bassin de Tensift au Maroc par une gestion améliorée du bassin versant et le paiement pour les services environnementaux - rapport final

    Get PDF
    Ce projet bénéficie d'une subvention du Centre de recherches pour le développement international (CRDI), Ottawa, Canada.Le défi que le présent projet de recherche a essayé de relever est de trouver des pistes pour repenser la GIRE dans un contexte du changement climatique, tout en prenant en considération le maintien de la production des biens et services environnementaux. Ceci ne pourra se réaliser qu’à travers des actions permettant de prendre en considération la donne climatique et les instruments basés sur le marché (e.g. le Paiement pour les Services Environnementaux (PSE)) dans les politiques de gestion de l’eau

    Assessment of Future Water Demand and Supply under IPCC Climate Change and Socio-Economic Scenarios, Using a Combination of Models in Ourika Watershed, High Atlas, Morocco

    No full text
    Climate change will affect the water resources system, on global and regional levels. Over the past thirty years, the High Atlas Mountains in Morocco have experienced severe droughts, which causes a decrease in water supply that affects both agriculture and the urban water system. In this paper, we assess the impact of climate change and socio-economic activities on water supply and demand in the Ourika watershed (High Atlas of Morocco), then we evaluate the efficiency and sustainability of regional adaptation strategies for water supply management. For this, we simulate and analyze the future water situation using the statistical downscaling model (SDSM) and the water assessment and planning tool (WEAP). After the model’s calibration and validation, the precipitation, minimum (Tmin) and maximum (Tmax) temperatures, water demand and unmet water demand were projected for 2100 horizon, using different climate change scenarios. The results revealed that the model’s performance, calibration and validation were found to be satisfactory. The analysis shows that the mean precipitation will decrease by 49.25% and 34.61% by 2100, under A2 and B2 emission scenarios of the Intergovernmental Panel on Climate Change (IPCC). The projected mean Tmax and Tmin will be warmer than the baseline period, with Tmax increasing by 4.2 °C (A2) and 3.6 °C (B2), and Tmin by 3.5 °C (A2) and 2.9 °C (B2) by 2100. The results also show that water demand and the unmet water demand will increase in all scenarios, the pressure on water resources will increase, leading to water scarcity. The results reveal that, under the influence of climate change, future unmet water demand is expected to reach 64 million cubic meters (MCM) by 2100. The results demonstrate that the assessments of the proposed adaptation strategies are effective, but not sufficient to ensure water sustainability for the Ourika watershed

    Climate Change Impacts on Water Supply and Demand in Rheraya Watershed (Morocco), with Potential Adaptation Strategies

    No full text
    Rheraya watershed already suffers from the impacts of climate variability and will be further affected by climate change. Severe water shortages and extremely fragile ecological conditions necessitate careful attention to water resources management. The aim of this study is to analyze Rheraya’s future water situation under different scenarios of socio-economic development and climate change until 2100. The Water Evaluation and Planning System model (WEAP) has been applied to estimate the current water demands and the increased water demands resulting from climate change. WEAP was calibrated using meteorological and demand observations, then, updated with present-day and future climatic conditions using the Statistical Down-scaling Model with two projections (A2, B2) of the Intergovernmental Panel on Climate Change. Those projections show an increase in temperature of about 2–3 °C and a reduction in precipitation of 40–60% with respect to baseline. The results show that the pressure on Rheraya’s water resources will increase, leading to greater competition for surface water, and that domestic, tourist, livestock and agricultural demands will not be met by the year 2100. The Results also demonstrate that the assessments of adaptation strategies proposed by decision makers are effective but not sustainable for the watershed

    Combining Satellite Data and Models to Assess Vulnerability to Climate Change and Its Impact on Food Security in Morocco

    No full text
    This work analyzes satellite and socioeconomic data to explore the relationship between food and wood demand and supply, expressed in terms of net primary production (NPP), in Morocco. A vulnerability index is defined as the ratio of demand to supply as influenced by population, affluence, technology and climate indicators. The present situation (1995–2007), as well as projections of demand and supply, following the Intergovernmental Panel on Climate Change, Scenarios A2 and B2, are analyzed for a 2025 horizon. We find that the food NPP demand increased by 34.5%, whereas the wood consumption NPP demand decreased by 19.3% between 1995 and 2007. The annual NPP required to support the population’s food and wood appropriation was 29.73 million tons of carbon (MTC) in 2007, while the landscape NPP production for the same year was 60.24 MTC; indicating that the population appropriates about 50% of the total NPP resources. Both scenarios show increases in demand and decreases in supply. Under A2, it would take more than 1.25 years for terrestrial ecosystems in Morocco to produce the NPP appropriated by populations in one year. This number is 0.70 years under B2. This already high vulnerability for food and wood products is likely to be exacerbated with climate changes and population increase

    Analyzing Temporal Patterns of Temperature, Precipitation, and Drought Incidents: A Comprehensive Study of Environmental Trends in the Upper Draa Basin, Morocco

    No full text
    Quantifying variation in precipitation and drought in the context of a changing climate is important to assess climate-induced changes and propose feasible mitigation strategies, particularly in agrarian economies. This study investigates the main characteristics and historical drought trend for the period 1980–2016 using the Standard Precipitation Index (SPI), Standard Precipitation Evaporation Index (SPEI), Run Theory and Mann–Kendall Trend Test at seven stations across the Upper Draa Basin. The results indicate that rainfall has the largest magnitude over the M’semrir and Agouim (>218 mm/pa) and the lowest in the Agouilal, Mansour Eddahbi Dam, and Assaka subregions (104 mm–134 mm/pa). The annual rainfall exhibited high variability with a coefficient of variation between 35−57% and was positively related to altitude with a correlation coefficient of 0.86. However, no significant annual rainfall trend was detected for all stations. The drought analysis results showed severe drought in 1981–1984, 2000–2001, and 2013–2014, with 2001 being the driest year during the study period and over 75% of both SPEI and SPI values returned drought. Conversely, wet years were experienced in 1988–1990 and 2007–2010, with 1989 being the wettest year. The drought frequency was low (<19%) across all the timescales considered for both SPI and SPEI, with Mansour Eddahbi Dam and Assaka recording the highest frequencies for SPI-3 and SPEI-3, respectively
    corecore