87 research outputs found

    Sentiment/Subjectivity Analysis Survey for Languages other than English

    Full text link
    Subjective and sentiment analysis have gained considerable attention recently. Most of the resources and systems built so far are done for English. The need for designing systems for other languages is increasing. This paper surveys different ways used for building systems for subjective and sentiment analysis for languages other than English. There are three different types of systems used for building these systems. The first (and the best) one is the language specific systems. The second type of systems involves reusing or transferring sentiment resources from English to the target language. The third type of methods is based on using language independent methods. The paper presents a separate section devoted to Arabic sentiment analysis.Comment: This is an accepted version in Social Network Analysis and Mining journal. The final publication will be available at Springer via http://dx.doi.org/10.1007/s13278-016-0381-

    PlaceAvoider: Steering First-Person Cameras away from Sensitive Spaces

    Full text link
    Abstract—Cameras are now commonplace in our social and computing landscapes and embedded into consumer devices like smartphones and tablets. A new generation of wearable devices (such as Google Glass) will soon make ‘first-person ’ cameras nearly ubiquitous, capturing vast amounts of imagery without deliberate human action. ‘Lifelogging ’ devices and applications will record and share images from people’s daily lives with their social networks. These devices that automatically capture images in the background raise serious privacy concerns, since they are likely to capture deeply private information. Users of these devices need ways to identify and prevent the sharing of sensitive images. As a first step, we introduce PlaceAvoider, a technique for owners of first-person cameras to ‘blacklist ’ sensitive spaces (like bathrooms and bedrooms). PlaceAvoider recognizes images captured in these spaces and flags them for review before the images are made available to applications. PlaceAvoider performs novel image analysis using both fine-grained image features (like specific objects) and coarse-grained, scene-level features (like colors and textures) to classify where a photo was taken. PlaceAvoider combines these features in a probabilistic framework that jointly labels streams of images in order to improve accuracy. We test the technique on five realistic first-person image datasets and show it is robust to blurriness, motion, and occlusion. I
    corecore