8 research outputs found
Engagement areas of missiles in the proportional navigated flight powered by air breathing engines
Ciljevi ovog iztraživanja su testiranje odnosa odgovarajuÄih letnih performansi posredno upravljanih raketa i uslovno kreiranje njihovih taktiÄkih, prostornih zona i vremena gaÄanja tokom upotrebe na povrÅ”inske ciljeve. Manevar leta, posredno daljinski upravljane rakete je testiran sa uslovno povezanim ograniÄenjima koja proistiÄu iz kinematike leta sa turbomlaznim pogonom rakete i naÄina kretanja cilja, tipiÄnog za iznenadne napade. OgraniÄenja sposobnosti manervisanja u letu, u fazi krstarenja, su razmatrani kao modeli kretanja materijalne taÄke radi kreiranja nevoÄenih (pretraživanja) i voÄenih navigacionih kinematskih trajektorija, projektovanih po odgovarajuÄem zakonu navigacije. U iztraživanju je koriÅ”Äen numeriÄki metod za simuliranje kretanja posredno upravljane rakete i cilja u horizontalnoj ravni kontrolisanjem linije cilja na odgovarajuÄoj visini leta. Ovo generiÅ”e granice zone pogotka i zone lansiranja, uspostavljene pomoÄu operativnog vremena leta posredno voÄenih raketa kao i moguÄih varijacija mase za oÄekivani naÄin borbenog leta.The goals of this research are to test the relationships of appropriate nonline of site (NLOS) missile flight performances and conditionally created their tactical ranges, spaces zones and shooting time during employment on the surface targets. Flight maneuver of distance remote controlled NLOS missile is tested with the conditionally joint constrains coming from flight kinematics with turbo-jet engine of NLOS missile and manner of target motion, typical of rapid reaction attacks. The constraints of maneuverability and flight, in the cruise phase, are considered as the mass point motion to create both unguided (searching) and guided navigated kinematical trajectories, which was designed by the appropriate guidance law. Research used numerical methods to simulate NLOS missile and targets motions in horizontal plane by controlling line of target (LOT) referred at the appropriate flight height. This generates borders of target impact and launching areas, establishes NLOS missile operation time, as well as masses variations for the expected manner of battle flight.
Engagement areas of missiles in the proportional navigated flight powered by air breathing engines
Ciljevi ovog iztraživanja su testiranje odnosa odgovarajuÄih letnih performansi posredno upravljanih raketa i uslovno kreiranje njihovih taktiÄkih, prostornih zona i vremena gaÄanja tokom upotrebe na povrÅ”inske ciljeve. Manevar leta, posredno daljinski upravljane rakete je testiran sa uslovno povezanim ograniÄenjima koja proistiÄu iz kinematike leta sa turbomlaznim pogonom rakete i naÄina kretanja cilja, tipiÄnog za iznenadne napade. OgraniÄenja sposobnosti manervisanja u letu, u fazi krstarenja, su razmatrani kao modeli kretanja materijalne taÄke radi kreiranja nevoÄenih (pretraživanja) i voÄenih navigacionih kinematskih trajektorija, projektovanih po odgovarajuÄem zakonu navigacije. U iztraživanju je koriÅ”Äen numeriÄki metod za simuliranje kretanja posredno upravljane rakete i cilja u horizontalnoj ravni kontrolisanjem linije cilja na odgovarajuÄoj visini leta. Ovo generiÅ”e granice zone pogotka i zone lansiranja, uspostavljene pomoÄu operativnog vremena leta posredno voÄenih raketa kao i moguÄih varijacija mase za oÄekivani naÄin borbenog leta.The goals of this research are to test the relationships of appropriate nonline of site (NLOS) missile flight performances and conditionally created their tactical ranges, spaces zones and shooting time during employment on the surface targets. Flight maneuver of distance remote controlled NLOS missile is tested with the conditionally joint constrains coming from flight kinematics with turbo-jet engine of NLOS missile and manner of target motion, typical of rapid reaction attacks. The constraints of maneuverability and flight, in the cruise phase, are considered as the mass point motion to create both unguided (searching) and guided navigated kinematical trajectories, which was designed by the appropriate guidance law. Research used numerical methods to simulate NLOS missile and targets motions in horizontal plane by controlling line of target (LOT) referred at the appropriate flight height. This generates borders of target impact and launching areas, establishes NLOS missile operation time, as well as masses variations for the expected manner of battle flight.
Software/hardware design of decision-making controllers for object navigation in horizontal plane
Cilj rada je istražiti moguÄnosti orijentacije objekta u horizontalnoj ravnini, poÄevÅ”i od njegovog poÄetnog kursa u zahtjevani rakurs, koristeÄi pojednostavljene metode navigacije. Usmjeravanje gibanja objekta koristi kontrolirane pogonske impulse neravnomjerno distribuirane u ograniÄenom vremenskom intervalu gibanja. Dizajnirane su tri metode logiÄkog odluÄivanja za izraÄunavanje najbolje putanje, Äije su greÅ”ke na cilju minimalne. RaÄunanje pogonskih impulsa, njihovih izvrÅ”nih instanci kao i tipova, prezentirani su u ovom radu. Razvijene kontrolne mjere su: modificirana viÅ”estruka shooting metoda, odnosno novi zakon upravljanja kako je nazvan u ovom radu, trenutna orijentacijska greÅ”ka, kao i metoda fuzzy logike. Metode su projektirane kao softver za donoÅ”enje odluke implementiran u elektronski hardver kao predefinirani programabilni kontroler. To daje preliminarno programiranje usmjeravanja objekta na samom poÄetku kursa gibanja prema ciljnoj toÄki smjeÅ”tenoj van poÄetnog pravca. Metodama se optimiziraju raspodijele ukupno determiniranog vremena radi realiziranja odgovarajuÄih tipova i broja pogonskih impulsa u sekvencama. Simulacijski testovi ovih metoda, kao i projektirani hardver, takoÄer su prezentirani u radu kao doprinos razvojnom istraživanju upravljanja horizontalnim gibanjem.The paper aims to research the orientation possibilities of an object in the horizontal plane, from its start course into a required orientating recourse, by using simplified navigation methods. The objectās directed motion uses controlling powering impulses, variable distributed in time, during constrained motion time. Three logical decision-making methods are designed for calculating the best maneuvering trajectory with minimal error on the target. Computing the powering impulses, their execution instances, as well as their types, are ensured by the methods and presented in the paper. The developed controlling methods are: a modified multiple shooting method, a new control law, called in this paper, current error orientation, as well as a fuzzy logic method. These methods are designed as decision-making software implemented in an electronic hardware as a predefined programmable controller. This provides pre-programmable orientation of the object at the very beginning of course motion, towards a targeted point settled out of initial direction. The controlling methods use optimal diversification of full elapsed determining time to execute, in sequences, appropriate types and number of powering impulses. Simulation tests of the methods, as well as the designed hardware, are also presented in this paper as a contribution to the development researches of horizontal motion control
STATIONARY ON-ROAD OBSTACLES AVOIDANCE BASED ON COMPUTER VISION PRINCIPLES
In this paper, the classification of the on-road obstacles based on the processing of a sequence of images obtained by a monocular camera embedded on a vehicle as well as the appropriate automatic guidance principle for obstacles avoidance are presented. The typical road scenarios have been used as a testing environment for the overall algorithm. Existing obstacles (vehicles) are classified into three classes: stationary, incoming, and outgoing. The first task in the algorithm consists of obstacles detection over the road background. This is followed by their tracking from one frame to another based on the appropriate selection of features using the SURF method. After that, the obstacles are recognized in a new frame, where it is possible to determine their position from the camera and the relative velocity using projection geometry principles. Then, the polynomial method is used in order to find the path that avoids the obstacles. Synthetic and realistic video sequences are used during the tests
A preliminary design model for explosively formed projectile
The current paper proposes analytical approaches implemented in a performance-calculation program of
Explosively Formed Projectiles (EFP). The proposed analytical methods, mathematically describe the EFP forming
process aiming to optimize the initial phase of the EFP warhead design. A mathematical model, based on the well-
known theoretical approaches, is accomplished and implemented in a software. The developed software provides faster
analysis of EFP design process and the possibility to test new EFP configurations, in addition to the performances of
already existing ones. The adopted model is tested and validated for several types of EFP warheads according to
available experimental reports. Programās output results such as initial velocity, kinetic energy, axial and radial
deformation energies of liners, are compared with experimental data
Experimental determination of rocket motor internal ballistic coefficients and performance parameters
In solid propellant rocket motor internal ballistic calculation, next coefficients, performance parameters and characteristics are required: specific impulse, discharge coefficient, thrust coefficient and propellant burning rate law. All those RM working parameters can be theoretically or semi-empirically predicted, but depends from rocket motor design and combustion products flow losses; theoretical values can be very unreliable. Correction of theoretical working parameters can be provided using experimental data, although this approach is expensive and requires necessary experimental equipment. By using corrected working parameters in internal ballistic calculation highly precise results can be achieved, and accuracy of this approach is demonstrated in two different examples
Experimental determination of rocket motor internal ballistic coefficients and performance parameters
In solid propellant rocket motor internal ballistic calculation, next coefficients, performance parameters and characteristics are required: specific impulse, discharge coefficient, thrust coefficient and propellant burning rate law. All those RM working parameters can be theoretically or semi-empirically predicted, but depends from rocket motor design and combustion products flow losses; theoretical values can be very unreliable. Correction of theoretical working parameters can be provided using experimental data, although this approach is expensive and requires necessary experimental equipment. By using corrected working parameters in internal ballistic calculation highly precise results can be achieved, and accuracy of this approach is demonstrated in two different examples