6 research outputs found

    A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement

    Get PDF
    Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement

    A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement

    Get PDF
    Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement

    Compatibilizers Effect on Recycled Acrylonitrile Butadiene Rubber with Polypropylene and Sugarcane Bagasse Composite for Mechanical Properties

    No full text
    Compatibilizers effect on recycled acrylonitrile butadiene rubber (NBRr) with polypropylene (PP) and sugarcane bagasse (SCB) composite for mechanical properties is evaluated. Trans-Polyoctylene Rubber (TOR) and Bisphenol a Diglycidyl Ether (DGEBA) are used as compatibilizers in this study. Three (3) different composites (80/20/15, 60/40/15, and 40/60/15), with fixed filler (15 phr) and compatibilizers (10 phr) content, were carried out. These composites were arranged via melt mixing technique utilizing a heated two-roll mill at a temperature of 180°C for 9 minutes employing a 15-rpm rotor speed. Tensile and morphological properties were evaluated. The result shown average tensile strength dropped by 48.50% as the recycle NBR content rises 20 phr. Nevertheless, subsequent compatibilization reveals that the composites’ tensile properties were all greater than control composites. The morphology discovered validates the tensile properties, indicating a stronger interaction between the PP/SCB and recycle NBR composites with the addition of compatibilizer DGEBA

    A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry

    No full text
    One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry
    corecore