2 research outputs found

    Plasminogen activator inhibitor-2 and impaired fibrinolysis in pregnancy and sickle cell anemia.

    Get PDF
    This is the first study that aimed to determine antigen levels in plasma and genotypes of PAI-2 in pregnant and non-pregnant homozygous sickle cell anemia (SCA) patients. The study subjects were all Bahraini females in the reproductive age group. The study population included 31 pregnant homozygous SS (SCA) patients. Three control groups were also studied to evaluate the effect of pregnancy and SCA on PAI-2 levels and fibrinolysis: (1) 31 healthy non-pregnant volunteers; (2) 31 cases of normal pregnancy; and (3) 20 non-pregnant SCA patients. Pregnancies were screened in the second (TM2) and third (TM3) trimesters. Global coagulation, fibrinolysis rate (euglobulin clot lysis time, ECLT), PAI-2 antigen (ELISA), and PAI-2 Ser(413)/Cys polymorphism (restriction fragment length polymorphism analysis) were determined. Feto-maternal complications were documented in both pregnancy groups. PAI-2 antigen levels were undetectable in the non-pregnant groups, but was quantifiable in both pregnant groups. Impaired fibrinolysis rate and rising PAI-2 levels with progression of pregnancy were observed in both healthy and SCA subjects. These changes were more prominent in SCA, although the rise in ECLT was less steep and PAI-2 antigen levels were not significantly different compared to normal pregnancy in the third trimester. No correlation was observed between PAI-2 genotypes and plasma antigen levels. Also, no significant difference in feto-maternal complications was found in normal (n = 25) versus SCA pregnant patients (n = 30). These observations suggest that with progression of pregnancy, increasing PAI-2 levels contribute to the hypercoagulable state, particularly in SCA patients. [Abstract copyright: © 2023. The Author(s).

    An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales

    No full text
    Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide
    corecore