4 research outputs found

    High performance Cuk converter considering non-linear inductors for photovoltaic system applications

    Get PDF
    The Cúk converter, which has voltage buck and boost ability, offers high flexibility as an interface device for solar panels. In addition, current ripple can be more reduced because of two input and output inductors at both sides. This paper presents a new application of current-variable inductors in a Cúk converter that reduces the size and capacity of storage elements. Because of two inductors in structure, implementation of these variable inductors is important; therefore, the proposed design leads to cost and size savings, increases the performance interval of tracker to gain solar energy at lower sunlight levels, and simplifies control strategy. To validate the effectiveness of this structure, the analytical analysis, simulation results using PSCAD/EMTDC software and experimental results are presented

    Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study

    No full text
    At present, the trend of all sectors and industries, especially the oil and gas industry, is towards reducing carbon dioxide emissions. Along with the modernization of technological processes, special attention has been paid to the reduction in greenhouse gas emissions from vehicles that run on gasoline and diesel. An effective solution in this field is the transition from vehicles with combustion engines to electric vehicles, similar to the use of the electric bus in public transportation. How to charge these electric buses is a challenge for researchers. By proposing a flash charging method for electric buses, the feasibility of using these buses is obtained. Due to the pulsating nature of the power demand in this charging method, the prevention of negative effects on the network by this type of load should be considered. These negative effects can include power quality problems, voltage drop, frequency instability, and overload of transmission lines and transformers. This paper presents a flywheel energy storage system (FESS)-based flash charging station for electric buses. The specifications of the components of this charging station are designed and sized for a case study for line 1 of Tehran Bus Rapid Transit (BRT). A charging strategy based on the proposed charging cycle is presented to minimize the high-power short-duration demand from the grid. The energy consumption of the electric bus based on the electricity consumption model is calculated. Based on theoretical calculations, for the case study, there is a need for installing 12 flash charging stations based on FESS in line 1 Tehran BRT. In this line, an electric bus with a battery capacity of 80 kWh is proposed. The power and energy capacity of these charging stations are sized to 600 kW and 3.334 kWh, respectively. Additionally, an economic comparison regarding the proposed charging station is conducted. The theoretical results of the design and sizing of the proposed charging station are validated based on simulation and experimental results for a small-scale laboratory setup

    Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study

    No full text
    At present, the trend of all sectors and industries, especially the oil and gas industry, is towards reducing carbon dioxide emissions. Along with the modernization of technological processes, special attention has been paid to the reduction in greenhouse gas emissions from vehicles that run on gasoline and diesel. An effective solution in this field is the transition from vehicles with combustion engines to electric vehicles, similar to the use of the electric bus in public transportation. How to charge these electric buses is a challenge for researchers. By proposing a flash charging method for electric buses, the feasibility of using these buses is obtained. Due to the pulsating nature of the power demand in this charging method, the prevention of negative effects on the network by this type of load should be considered. These negative effects can include power quality problems, voltage drop, frequency instability, and overload of transmission lines and transformers. This paper presents a flywheel energy storage system (FESS)-based flash charging station for electric buses. The specifications of the components of this charging station are designed and sized for a case study for line 1 of Tehran Bus Rapid Transit (BRT). A charging strategy based on the proposed charging cycle is presented to minimize the high-power short-duration demand from the grid. The energy consumption of the electric bus based on the electricity consumption model is calculated. Based on theoretical calculations, for the case study, there is a need for installing 12 flash charging stations based on FESS in line 1 Tehran BRT. In this line, an electric bus with a battery capacity of 80 kWh is proposed. The power and energy capacity of these charging stations are sized to 600 kW and 3.334 kWh, respectively. Additionally, an economic comparison regarding the proposed charging station is conducted. The theoretical results of the design and sizing of the proposed charging station are validated based on simulation and experimental results for a small-scale laboratory setup

    A Comprehensive Review on Flywheel Energy Storage Systems: Survey on Electrical Machines, Power Electronics Converters, and Control Systems

    No full text
    Publisher Copyright: AuthorFinding efficient and satisfactory energy storage systems (ESSs) is one of the main concerns in the industry. Flywheel energy storage system (FESS) is one of the most satisfactory energy storage which has lots of advantages such as high efficiency, long lifetime, scalability, high power density, fast dynamic, deep charging, and discharging capability. The above features are necessary for electric vehicles (EVs), railways, renewable energy systems, and microgrids. Also, electrical machines, power electronics converters, and control systems are the cores of energy transfer in FESS. Therefore, they have a critical role in determining efficiency, power rating, power factor, cost, angular velocity, and volume of FESS. So, in this study, the FESS configuration, including the flywheel (rotor), electrical machine, power electronics converter, control system, and bearing are reviewed, individually and comprehensively. Additionally, the mentioned components have been categorized to be a guide for future research. The investigated electrical machines are compared by Finite Element Analysis (FEA). Subsequently, our laboratory's measurement results are reviewed experimentally showing the progress in the field of FESS, such as designing robust control algorithms and an Interior Permanent Magnet-Synchronous Reluctance Machine (IPM-SynRM) to use in FESS.Peer reviewe
    corecore