2 research outputs found

    Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films

    Get PDF
    This work reports the preparation and characterization of silver nanoparticles synthesized through wet chemical solution method and of silver films deposited by dip-coating method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and energy dispersive spectroscopy (EDX) have been used to characterize the prepared silver nanoparticles and thin film. The morphology and crystal structure of silver nanoparticles have been determined by FESEM, HRTEM, and FETEM. The average grain size of silver nanoparticles is found to be 17.5 nm. The peaks in XRD pattern are in good agreement with that of face-centered-cubic form of metallic silver. TGA/DTA results confirmed the weight loss and the exothermic reaction due to desorption of chemisorbed water. The temperature dependence of resistivity of silver thin film, determined in the temperature range of 100-300 K, exhibit semiconducting behavior of the sample. The sample shows the activated variable range hopping in the localized states near the Fermi level

    Optical properties of poly(9,9’-di-n-octylfluorenyl-2.7-diyl)/amorphous SiO2 nanocomposite thin films

    Get PDF
    Identified as potential materials for optoelectronic applications, the polymer/inorganic nanocomposites are actively studied. In this work, the effect of amorphous silica nanoparticles (NPs) content on the optical properties of Poly (9,9’-di-n-octylfluorenyl- 2.7-diyl) (PFO) thin films has been investigated. Different ratios of PFO/SiO2 NPs composites have been prepared using solution blending method. Then, the blends were spin-coated onto glass substrates at 2000 rpm for 30 s and subsequently dried at room temperature. XRD and TEM were used to determine the structural properties, while UV-Vis and PL spectrophotometers were employed to investigate the optical properties of the films. XRD confirms that there was no variation on structure of both PFO and SiO2 NPs resulted from the blending process. TEM micrographs display that majority of amorphous SiO2 NPs were well coated with PFO. The absorption spectra of the composite thin films were red-shifted, indicating the increment in conjugation length of the PFO/SiO2 composite. In addition, the calculated values of the optical energy gap, the width of the energy tails and vibronic spacing of the composite films exhibited SiO2 content dependence
    corecore