12 research outputs found

    Technical section Drawing lines by uniform packing

    No full text
    In this paper, we introduce a new approach to line drawing that attempts to maintain a uniform packing density of horizontal segments to diagonal segments throughout the line. While the conventional line drawing algorithms perform linear time computations to find the location of the pixels, our algorithm takes logarithmic time. Also, experimental results show that the quality of line is acceptable and comparable to the well-known Bresenham’s line-drawing algorithm

    Recent Developments of Carboxymethyl Cellulose

    No full text
    Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field

    Synthesis and Characterization of Carbon and Carbon-Nitrogen Doped Black TiO2 Nanomaterials and Their Application in Sonophotocatalytic Remediation of Treated Agro-Industrial Wastewater

    No full text
    The conventional open ponding system employed for palm oil mill agro-effluent (POME) treatment fails to lower the levels of organic pollutants to the mandatory standard discharge limits. In this work, carbon doped black TiO2 (CB-TiO2) and carbon-nitrogen co-doped black TiO2 (CNB-TiO2) were synthesized via glycerol assisted sol-gel techniques and employed for the remediation of treated palm oil mill effluent (TPOME). Both the samples were anatase phase, with a crystallite size of 11.09–22.18 nm, lower bandgap of 2.06–2.63 eV, superior visible light absorption ability, and a high surface area of 239.99–347.26 m2/g. The performance of CNB-TiO2 was higher (51.48%) compared to only (45.72%) CB-TiO2. Thus, the CNB-TiO2 is employed in sonophotocatalytic reactions. Sonophotocatalytic process based on CNB-TiO2, assisted by hydrogen peroxide (H2O2), and operated at an ultrasonication (US) frequency of 30 kHz and 40 W power under visible light irradiation proved to be the most efficient for chemical oxygen demand (COD) removal. More than 90% of COD was removed within 60 min of sonophotocatalytic reaction, producing the effluent with the COD concentration well below the stipulated permissible limit of 50 mg/L. The electrical energy required per order of magnitude was estimated to be only 177.59 kWh/m3, indicating extreme viability of the proposed process for the remediation of TPOME

    Synthesis and Characterization of Manganese-Modified Black TiO2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater

    No full text
    The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron–hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping

    Kinetics and Adsorption Isotherms of Amine-Functionalized Magnesium Ferrite Produced Using Sol-Gel Method for Treatment of Heavy Metals in Wastewater

    No full text
    This study is focused on the kinetics and adsorption isotherms of amine-functionalized magnesium ferrite (MgFe2O4) for treating the heavy metals in wastewater. A sol-gel route was adopted to produce MgFe2O4 nanoparticles. The surfaces of the MgFe2O4 nanoparticles were functionalized using primary amine (ethanolamine). The surface morphology, phase formation, and functionality of the MgFe2O4 nano-adsorbents were studied using the SEM, UV-visible, FTIR, and TGA techniques. The characterized nanoparticles were tested on their ability to adsorb the Pb2+, Cu2+, and Zn2+ ions from the wastewater. The kinetic parameters and adsorption isotherms for the adsorption of the metal ions by the amine-functionalized MgFe2O4 were obtained using the pseudo-first-order, pseudo-second-order, Langmuir, and Freundlich models. The pseudo-second order and Langmuir models best described the adsorption kinetics and isotherms, implying strong chemisorption via the formation of coordinative bonds between the amine groups and metal ions. The Langmuir equation revealed the highest adsorption capacity of 0.7 mmol/g for the amine-functionalized MgFe2O4 nano-adsorbents. The adsorption capacity of the nanoadsorbent also changed with the calcination temperature. The MgFe2O4 sample, calcined at 500 °C, removed the most of the Pb2+ (73%), Cu2+ (59%), and Zn2+ (62%) ions from the water

    Gold Nanorods for Doxorubicin Delivery: Numerical Analysis of Electric Field Enhancement, Optical Properties and Drug Loading/Releasing Efficiency

    No full text
    The optical properties and electric field enhancement of gold nanorods for different cases were investigated in this study. The numerical analysis was carried out to understand the functionality and working of gold nanorods, while the experimental portion of the work was focused on the efficiency of gold nanorods for targeted drug delivery. COMSOL Multiphysics was used for numerical analysis. The theoretical results suggest the use of gold nanorods (AuNRs) for anticancer applications. The resonance peaks for gold nanorods of 10 nm diameter were observed at 560 nm. The resonance peaks shifted towards longer wavelengths with an increase in nanorod size. The resonance peaks showed a shift of 140 nm with a change in nanorod length from 25 to 45 nm. On the experimental side, 22 nm, 35 nm and 47 nm long gold nanorods were produced using the seed-mediated growth method. The surface morphology of the nanorods, as well as their optical characteristics, were characterized. Later, gold nanorods were applied to the targeted delivery of the doxorubicin drug. Gold nanorods showed better efficiency for doxorubicin drug loading time, release time, loading temperature, and release temperature. These results reveal that AuNRs@DA possess good ability to load and deliver the drug directly to the tumorous cells since these cells show high temperature and acidity
    corecore