13 research outputs found

    Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasmids are being reconsidered as viable vector alternatives to viruses for gene therapies and vaccines because they are safer, non-toxic, and simpler to produce. Accordingly, there has been renewed interest in the production of plasmid DNA itself as the therapeutic end-product of a bioprocess. Improvement to the best current yields and productivities of such emerging processes would help ensure economic feasibility on the industrial scale. Our goal, therefore, was to develop a stoichiometric model of <it>Escherichia coli </it>metabolism in order to (1) determine its maximum theoretical plasmid-producing capacity, and to (2) identify factors that significantly impact plasmid production.</p> <p>Results</p> <p>Such a model was developed for the production of a high copy plasmid under conditions of batch aerobic growth on glucose minimal medium. The objective of the model was to maximize plasmid production. By employing certain constraints and examining the resulting flux distributions, several factors were determined that significantly impact plasmid yield. Acetate production and constitutive expression of the plasmid's antibiotic resistance marker exert negative effects, while low pyruvate kinase (Pyk) flux and the generation of NADPH by transhydrogenase activity offer positive effects. The highest theoretical yield (592 mg/g) resulted under conditions of no marker or acetate production, nil Pyk flux, and the maximum allowable transhydrogenase activity. For comparison, when these four fluxes were constrained to wild-type values, yields on the order of tens of mg/g resulted, which are on par with the best experimental yields reported to date.</p> <p>Conclusion</p> <p>These results suggest that specific plasmid yields can theoretically reach 12 times their current experimental maximum (51 mg/g). Moreover, they imply that abolishing Pyk activity and/or transhydrogenase up-regulation would be useful strategies to implement when designing host strains for plasmid production; mutations that reduce acetate production would also be advantageous. The results further suggest that using some other means for plasmid selection than antibiotic resistance, or at least weakening the marker's expression, would be beneficial because it would allow more precursor metabolites, energy, and reducing power to be put toward plasmid production. Thus far, the impact of eliminating Pyk activity has been explored experimentally, with significantly higher plasmid yields resulting.</p

    E. coli separatome-based protein expression and purification platform

    Get PDF
    Provided is a separatome-based peptide, polypeptide, and protein expression and purification platform based on the juxtaposition of the binding properties of host cell genomic peptides, polypeptides, and proteins with the characteristics and location of the corresponding genes on the host cell chromosome of E. coli. The separatome-based protein expression and purification platform quantitatively describes and identifies priority deletions, modifications, or inhibitions of certain gene products to increase chromatographic separation efficiency, defined as an increase in column capacity, column selectivity, or both, with emphasis on the former. Moreover, the separatome-based protein expression and purification platform provides a computerized knowledge tool that, given separatome data, and a target recombinant peptide, polypeptide, or protein, intuitively suggests strategies facilitating efficient product purification. The separatome-based protein expression and purification platform is an efficient bioseparation system that intertwines host cell expression systems and chromatography

    Effect of plasmid replication deregulation via inc mutations on E. coli proteome & simple flux model analysis

    Get PDF
    When the replication of a plasmid based on sucrose selection is deregulated via the inc1 and inc2 mutations, high copy numbers (7,000 or greater) are attained while the growth rate on minimal medium is negligibly affected. Adaptions were assumed to be required in order to sustain the growth rate. Proteomics indicated that indeed a number of adaptations occurred that included increased expression of ribosomal proteins and 2-oxoglutarate dehydrogenase. The operating space prescribed by a basic flux model that maintained phenotypic traits (e.g. growth, byproducts, etc.) within typical bounds of resolution was consistent with the flux implications of the proteomic changes

    Separatome-based protein expression and purification platform

    Get PDF
    Provided is a separatome-based recombinant peptide, polypeptide, and protein expression and purification platform based on the juxtaposition of the binding properties of host cell genomic peptides, polypeptides, and proteins with the characteristics and location of the corresponding genes on the host cell chromosome, such as that of E. coli, yeast, Bacillus subtilis or other prokaryotes, insect cells, mammalian cells, etc. This platform quantitatively describes and identifies priority deletions, modifications, or inhibitions of certain gene products to increase chromatographic separation efficiency, defined as an increase in column capacity, column selectivity, or both, with emphasis on the former. Moreover, the platform provides a computerized knowledge tool that, given separatome data and a target recombinant peptide, polypeptide, or protein, intuitively suggests strategies leading to efficient product purification. The separatome-based protein expression and purification platform is an efficient bioseparation system that intertwines host cell expression systems and chromatography

    Tagging Retrovirus Vectors with a Metal Binding Peptide and One-Step Purification by Immobilized Metal Affinity Chromatography

    No full text
    Retroviral vectors produced from packaging cells are invariably contaminated by protein, nucleic acid, and other substances introduced in the manufacturing process. Elimination of these contaminants from retroviral vector preparations is helpful to reduce unwanted side effects, and purified vector preparations are desirable to improve reproducibility of therapeutic effect. Here we report a novel approach to engineer a metal binding peptide (MBP)-tagged murine leukemia virus (MuLV), allowing for one-step purification of retroviral vectors by immobilized metal affinity chromatography (IMAC). We inserted a His(6) peptide into an ecotropic envelope protein (Env) by replacing part of its hypervariable region sequence with a sequence encoding the His(6) peptide. Display of the His(6) tag on the surface of Env endowed the vectors with a high affinity for immobilized metal ions, such as nickel. We demonstrated that the His(6)-tagged MuLV could be produced to high titers and could be highly purified by one-step IMAC. The protein and DNA contaminants in the purified vector supernatants were below 7 μg/ml and 25 pg/ml, respectively, indicating a 1,229-fold reduction in protein contaminant level and a 6,800-fold reduction in DNA contaminant level. About 56% of the viral vectors were recovered in the IMAC purification. The purified vectors retained their functionality and infectivity. These results establish that an MBP can be functionally displayed on the surface of ecotropic retroviruses without interfering with their integrity, and MBP-tagged retroviral vectors can be highly purified by one-step IMAC
    corecore