6 research outputs found

    Enhancement of total antioxidants and flavonoid (quercetin) by methyl jasmonate elicitation in tissue cultures of onion (Allium cepa L.)

    Get PDF
    The onion (Allium cepa) is a vegetable used extensively all over the world both for culinary purposes as well as in medicine. Its medicinal values are due to the high levels of biologically-active compounds present within the bulb. There are various phytochemicals of therapeutic importance found in A. cepa. Quercetin, a flavonoid, is one of these phytochemicals and it is a potent antioxidant. Allium cepa is a dietary supplement and is beneficial for diverse ailments, thus justifying its status as a valuable medicinal plant. Due to its medicinal significance, elicitation of total antioxidants and quercetin levels have been attempted to enhance their production in tissue callus cultures. This study reports in vitro enhancement of total antioxidants and quercetin in A. cepa using methyl jasmonate as an elicitor. A reverse phase-high performance liquid chromatography (RP-HPLC) method was used with an isocratic system and a flow rate of 1.0 mL min−1 and a mobile phase of acetonitrile: 1% v/v acetic acid (60%:40% v/v). The detection wavelength was 362 nm and the retention time 8.79 minutes. Total antioxidant and quercetin contents were maximal with 100 ”M of methyl jasmonate in leaf tissue callus cultures at 84.61 ±6.03% and 0.81 ±0.03 mg g−1 dry cell weight, respectively. They decreased with further increases of methyl jasmonate at 200 ”M. The increase in total antioxidant and quercetin contents were 2.3- and 13.9-fold, respectively. The optimization of methyl jasmonate as an elicitor, as well as the determination of a suitable concentration in A. cepa in callus cultures, will be helpful for enhanced production of various other secondary metabolites of therapeutic significance. This could be beneficial for the pharmaceutical and neutraceutical industries for herbal drug formulations

    Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana

    No full text
    GABA-transaminase (GABA-T) involved in carbon and nitrogen metabolism during the plant development process via GABA shunt and GABA-T mutant, which is defective in GABA catabolism, is ideal model to examine the role of GABA-T in plant development and leaf senescence of plant. We have characterized GABA transaminase knock out mutant pop2-1 that is transition and pop2-3 which is T-DNA insertion mutant of Arabidopsis thaliana during various stress conditions.The GABA-T knockout mutant plants displayed precocious leaf senescence, which was accompanied by the assays of physiological parameters of leaf senescence during various stress conditions. Furthermore, our physiological evidence indicates that pop2-1 and pop2-3 mutations rapidly decreased the efficiency of leaf photosynthesis, chlorophyll content, GABA content, GABA-T, and glutamate decarboxylase (GAD) activity and on the other hand increases membrane ion leakage, malondialdehyde (MDA) level in stress induced leaves. However, cell viability assay by trypan blue and insitu Hydrogen peroxidation assay by 3,3-diaminobenzidine (DAB) in stress induced leaves also display that pop2-1 and pop2-3 mutant leaves show oversensitivity in response to different stress conditions as compared to wild type. These results strongly indicate that the loss-of-function of GABA transaminase gene induces early leaf senescence in Arabidopsis thaliana during various stress conditions

    Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms

    No full text
    Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1–2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2‱–), hydrogen peroxide (H2O2), hydroxyl radical (‱OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed

    Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms

    No full text
    Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1–2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2‱–), hydrogen peroxide (H2O2), hydroxyl radical (‱OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed
    corecore