4 research outputs found
An Intelligent Monitoring System of Vehicles on Highway Traffic
Vehicle speed monitoring and management of highways is the critical problem
of the road in this modern age of growing technology and population. A poor
management results in frequent traffic jam, traffic rules violation and fatal
road accidents. Using traditional techniques of RADAR, LIDAR and LASAR to
address this problem is time-consuming, expensive and tedious. This paper
presents an efficient framework to produce a simple, cost efficient and
intelligent system for vehicle speed monitoring. The proposed method uses an HD
(High Definition) camera mounted on the road side either on a pole or on a
traffic signal for recording video frames. On the basis of these frames, a
vehicle can be tracked by using radius growing method, and its speed can be
calculated by calculating vehicle mask and its displacement in consecutive
frames. The method uses pattern recognition, digital image processing and
mathematical techniques for vehicle detection, tracking and speed calculation.
The validity of the proposed model is proved by testing it on different
highways.Comment: 5 page
A Deep Sequence Learning Framework for Action Recognition in Small-Scale Depth Video Dataset
Depth video sequence-based deep models for recognizing human actions are scarce compared to RGB and skeleton video sequences-based models. This scarcity limits the research advancements based on depth data, as training deep models with small-scale data is challenging. In this work, we propose a sequence classification deep model using depth video data for scenarios when the video data are limited. Unlike summarizing the frame contents of each frame into a single class, our method can directly classify a depth video, i.e., a sequence of depth frames. Firstly, the proposed system transforms an input depth video into three sequences of multi-view temporal motion frames. Together with the three temporal motion sequences, the input depth frame sequence offers a four-stream representation of the input depth action video. Next, the DenseNet121 architecture is employed along with ImageNet pre-trained weights to extract the discriminating frame-level action features of depth and temporal motion frames. The extracted four sets of feature vectors about frames of four streams are fed into four bi-directional (BLSTM) networks. The temporal features are further analyzed through multi-head self-attention (MHSA) to capture multi-view sequence correlations. Finally, the concatenated genre of their outputs is processed through dense layers to classify the input depth video. The experimental results on two small-scale benchmark depth datasets, MSRAction3D and DHA, demonstrate that the proposed framework is efficacious even for insufficient training samples and superior to the existing depth data-based action recognition methods
Machine Learning Based Missing Data Imputation in Categorical Datasets
In order to predict and fill in the gaps in categorical datasets, this research looked into the use of machine learning algorithms. The emphasis was on ensemble models constructed using the Error Correction Output Codes (ECOC) framework, including models based on SVM and KNN as well as a hybrid classifier that combines models based on SVM, KNN, and MLP. Three diverse datasets—the CPU, Hypothyroid, and Breast Cancer datasets—were employed to validate these algorithms. Results indicated that these machine learning techniques provided substantial performance in predicting and completing missing data, with the effectiveness varying based on the specific dataset and missing data pattern. Compared to solo models, ensemble models that made use of the ECOC framework significantly improved prediction accuracy and robustness. Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data and the possibility of over-fitting. Subsequent research endeavors ought to evaluate the feasibility and efficacy of deep learning algorithms in the context of the imputation of missing data