19 research outputs found

    Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective

    Get PDF
    Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production

    Coronavirus disease 2019 and future pandemics: Impacts on livestock health and production and possible mitigation measures

    Get PDF
    The World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic on March 11, 2020. COVID-19, the current global health emergency, is wreaking havoc on human health systems and, to a lesser degree, on animals globally. The outbreak has continued since the first report of COVID-19 in China in December 2019, and the second and third waves of the outbreak have already begun in several countries. COVID-19 is expected to have adverse effects on crop production, food security, integrated pest control, tourism, the car industry, and other sectors of the global economy. COVID-19 induces a range of effects in livestock that is reflected economically since human health and livelihood are intertwined with animal health. We summarize the potentially harmful effects of COVID-19 on livestock and possible mitigation steps in response to this global outbreak. Mitigation of the negative effects of COVID-19 and future pandemics on livestock requires the implementation of current guidelines

    Pathogenesis and Immune Response Caused by Vector-Borne and Other Viral Infections in a Tupaia Model

    No full text
    The Tupaia or tree shrew (Tupaia belangeri), a small mammal of the Tupaiidae family, is an increasingly used and promising infection model for virological and immunological research. Recently, sequencing of the Tupaia whole genome revealed that it is more homologous to the genome of humans than of rodents. Viral infections are a global threat to human health, and a complex series of events are involved in the interactions between a virus and the host immune system, which play important roles in the activation of an immune response and the outcome of an infection. Majority of immune response data in viral infections are obtained from studies using animal models that enhance the understanding of host-virus interactions; a proper understanding of these interactions is very important for the development of effective antivirals and prophylactics. Therefore, animal models that are permissive to infection and that recapitulate human disease pathogenesis and immune responses to viral infections are essential. Several studies have shown the permissiveness of Tupaia to a number of important human viral infections in vitro and in vivo without prior adaptation of the viruses; the immune responses and clinical manifestations were comparable to those observed in human infections. Thus, the Tupaia is being utilized and developed as a promising immunocompetent small animal model for viral infection studies. In this review, we focused on the immune responses, mostly innate, during viral infection and pathogenesis in the Tupaia model; we evaluated the interaction between the virus and the components of host resistance, the usefulness of this model for immunopathogenesis studies, and the vaccines and antivirals available

    CD4, CD8b, and Cytokines Expression Profiles in Peripheral Blood Mononuclear Cells Infected with Different Subtypes of KoRV from Koalas (Phascolarctos cinereus) in a Japanese Zoo

    No full text
    Koala retrovirus (KoRV) poses a major threat to koala health and conservation, and currently has 10 identified subtypes: an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). However, subtype-related variations in koala immune response to KoRV are uncharacterized. In this study, we investigated KoRV-related immunophenotypic changes in a captive koala population (Hirakawa zoo, Japan) with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C), based on qPCR measurements of CD4, CD8b, IL-6, IL-10 and IL-17A mRNA expression in unstimulated and concanavalin (Con)-A-stimulated peripheral blood mononuclear cells (PBMCs). Although CD4, CD8b, and IL-17A expression did not differ between KoRV subtype infection profiles, IL-6 expression was higher in koalas with exogenous infections (both KoRV-B and KoRV-C) than those with the endogenous subtype only. IL-10 expression did not significantly differ between subtype infection profiles but did show a marked increase—accompanying decreased CD4:CD8b ratio—in a koala with lymphoma and co-infected with KoRV-A and -B, thus suggesting immunosuppression. Taken together, the findings of this study provide insights into koala immune response to multiple KoRV subtypes, which can be exploited for the development of prophylactic and therapeutic interventions for this iconic marsupial species

    Toll-Like Receptor Response to Hepatitis B Virus Infection and Potential of TLR Agonists as Immunomodulators for Treating Chronic Hepatitis B: An Overview

    No full text
    Chronic hepatitis B virus (HBV) infection remains a major global health problem. The immunopathology of the disease, especially the interplay between HBV and host innate immunity, is poorly understood. Moreover, inconsistent literature on HBV and host innate immunity has led to controversies. However, recently, there has been an increase in the number of studies that have highlighted the link between innate immune responses, including Toll-like receptors (TLRs), and chronic HBV infection. TLRs are the key sensing molecules that detect pathogen-associated molecular patterns and regulate the induction of pro- and anti-inflammatory cytokines, thereby shaping the adaptive immunity. The suppression of TLR response has been reported in patients with chronic hepatitis B (CHB), as well as in other models, including tree shrews, suggesting an association of TLR response in HBV chronicity. Additionally, TLR agonists have been reported to improve the host innate immune response against HBV infection, highlighting the potential of these agonists as immunomodulators for enhancing CHB treatment. In this study, we discuss the current understanding of host innate immune responses during HBV infection, particularly focusing on the TLR response and TLR agonists as immunomodulators

    Epidemiology and Risk Factors for Acute Viral Hepatitis in Bangladesh: An Overview

    No full text
    Viral infections by hepatotropic viruses can cause both acute and chronic infections in the liver, resulting in morbidity and mortality in humans. Hepatotropic viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV), are the major pathogens that cause acute and chronic infections in humans. Although all of these viruses can cause acute hepatitis in humans, HAV and HEV are the predominant causative agents in Bangladesh, where the occurrence is sporadic throughout the year. In this review, we provide an overview of the epidemiology of hepatotropic viruses that are responsible for acute hepatitis in Bangladesh. Additionally, we focus on the transmission modes of these viruses and the control and prevention of infections

    Toll-like Receptor Response to Hepatitis C Virus Infection: A Recent Overview

    No full text
    Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs

    Toll-Like Receptor Expression Profiles in Koala (Phascolarctos cinereus) Peripheral Blood Mononuclear Cells Infected with Multiple KoRV Subtypes

    No full text
    Toll-like receptors (TLRs), evolutionarily conserved pattern recognition receptors, play an important role in innate immunity by recognizing microbial pathogen-associated molecular patterns. Koala retrovirus (KoRV), a major koala pathogen, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the expression profile of TLRs in koalas infected with KoRV-A and other subtypes is yet to characterize. Here, we investigated TLR expression profiles in koalas with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C). To this end, we cloned partial sequences for TLRs (TLR2–10 and TLR13), developed real-time PCR assays, and determined TLRs mRNA expression patterns in koala PBMCs and/or tissues. All the reported TLRs for koala were expressed in PBMCs, and variations in TLR expression were observed in koalas infected with exogenous subtypes (KoRV-B and KoRV-C) compared to the endogenous subtype (KoRV-A) only, which indicates the implications of TLRs in KoRV infection. TLRs were also found to be differentially expressed in koala tissues. This is the first report of TLR expression profiles in koala, which provides insights into koala’s immune response to KoRV infection that could be utilized for the future exploitation of TLR modulators in the maintenance of koala health
    corecore