127 research outputs found

    Novel electrode structure for the reduction of methanol crossover in a passive DMFC

    Get PDF
    学位記番号:工博甲347, 学位の種類:博士(工学), 学位授与年月日:平成20年6月30

    Yeast as a Biocatalyst in Microbial Fuel Cell

    Get PDF
    Microbial fuel cells (MFCs) are fascinating bioelectrochemical devices that use the catalytic activity of living microorganisms to draw electric energy from organic matter present naturally in the environment or in the waste. Yeasts are eukaryotic microorganisms, classified as members of the fungus kingdom. Several yeast strains have been studied as biocatalysts in MFC with or without external mediator such as Saccharomyces cerevisiae, Candida melibiosica, Hansenula anomala, Hansenula polymorpha, Arxula adeninvorans and Kluyveromyces marxianus. In this chapter, we will focus on the use of yeast as a biocatalyst in the anode of microbial fuel cells (MFCs). How different yeast strains transfer electrons to the anode of the microbial fuel cells, advantages and challenges of the use of yeasts in MFCs, how to improve the performance and sustainability of the yeast-based MFCs through the modification of the anode electrode surface, and the application of the yeast-based MFCs in continuous wastewater treatment were discussed

    Attaining superior performance in an aqueous hybrid supercapacitor based on N-doped highly porous carbon spheres and N-S dual doped Co<sub>3</sub>O<sub>4</sub>

    Get PDF
    Cobalt oxide (Co3O4) has seen a significant interest for its application as an electrode for supercapacitors, due to its cost-effectiveness, high theoretical capacitance and outstanding redox activity. However, Co3O4 exhibits poor electrical conductivity and cycle life restricting its high-power energy storage applications. High porosity carbons are materials of choice for applications in electric double layer charge storage but suffer from poor energy densities due to limited charge storage capabilities. Here we propose a hierarchical functionalization strategy to develop N, S co-doped Co3O4 and N doped high porosity carbon micro-spheres for efficient and durable hybrid supercapacitor. Benefiting from the structural eminence, improved electrical conductivity and high quantity of N content, the heteroatom enriched N, S co-doped Co3O4 and N doped porous carbon spheres demonstrates superior electrochemical performance. Moreover, hybrid supercapacitor cell with N, S co-doped Co3O4 as a cathode and N doped porous carbon spheres as anode deliver a high specific energy of 52 Wh kg-1 at power density of 1462 W kg-1 coupled with the capacity retention of 95% after 5,000 charge-discharge cycles. Therefore, by improving both anode and cathode simultaneously can be considered an effective approach to enhance energy storage capabilities of hybrid supercapacitors while maintain exceptionally high-power densities

    Critical Review of Flywheel Energy Storage System

    Get PDF
    This review presents a detailed summary of the latest technologies used in flywheel energy storage systems (FESS). This paper covers the types of technologies and systems employed within FESS, the range of materials used in the production of FESS, and the reasons for the use of these materials. Furthermore, this paper provides an overview of the types of uses of FESS, covering vehicles and the transport industry, grid leveling and power storage for domestic and industrial electricity providers, their use in motorsport, and applications for space, satellites, and spacecraft. Different types of machines for flywheel energy storage systems are also discussed. This serves to analyse which implementations reduce the cost of permanent magnet synchronous machines. As well as this, further investigations need to be carried out to determine the ideal temperature range of operation. Induction machines are currently stoutly designed with lower manufacturing cost, making them unsuitable for high-speed operations. Brushless direct current machines, the Homolar machines, and permanent magnet synchronous machines should also be considered for future research activities to improve their performance in a flywheel energy storage system. An active magnetic bearing can also be used alongside mechanical bearings to reduce the control systems’ complications, thereby making the entire system cost-effective

    Metaheuristic-Based Algorithms for Optimizing Fractional-Order Controllers—A Recent, Systematic, and Comprehensive Review

    Get PDF
    Metaheuristic optimization algorithms (MHA) play a significant role in obtaining the best (optimal) values of the system’s parameters to improve its performance. This role is significantly apparent when dealing with systems where the classical analytical methods fail. Fractional-order (FO) systems have not yet shown an easy procedure to deal with the determination of their optimal parameters through traditional methods. In this paper, a recent, systematic. And comprehensive review is presented to highlight the role of MHA in obtaining the best set of gains and orders for FO controllers. The systematic review starts by exploring the most relevant publications related to the MHA and the FO controllers. The study is focused on the most popular controllers such as the FO-PI, FO-PID, FO Type-1 fuzzy-PID, and FO Type-2 fuzzy-PID. The time domain is restricted in the articles published through the last decade (2014:2023) in the most reputed databases such as Scopus, Web of Science, Science Direct, and Google Scholar. The identified number of papers, from the entire databases, has reached 850 articles. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was applied to the initial set of articles to be screened and filtered to end up with a final list that contains 82 articles. Then, a thorough and comprehensive study was applied to the final list. The results showed that Particle Swarm Optimization (PSO) is the most attractive optimizer to the researchers to be used in the optimal parameters identification of the FO controllers as it attains about 25% of the published papers. In addition, the papers that used PSO as an optimizer have gained a high citation number despite the fact that the Chaotic Atom Search Optimization (ChASO) is the highest one, but it is used only once. Furthermore, the Integral of the Time-Weighted Absolute Error (ITAE) is the best nominated cost function. Based on our comprehensive literature review, this appears to be the first review paper that systematically and comprehensively addresses the optimization of the parameters of the fractional-order PI, PID, Type-1, and Type-2 fuzzy controllers with the use of MHAs. Therefore, the work in this paper can be used as a guide for researchers who are interested in working in this field

    Review of Metaheuristic Optimization Algorithms for Power Systems Problems

    Get PDF
    Metaheuristic optimization algorithms are tools based on mathematical concepts that are used to solve complicated optimization issues. These algorithms are intended to locate or develop a sufficiently good solution to an optimization issue, particularly when information is sparse or inaccurate or computer capability is restricted. Power systems play a crucial role in promoting environmental sustainability by reducing greenhouse gas emissions and supporting renewable energy sources. Using metaheuristics to optimize the performance of modern power systems is an attractive topic. This research paper investigates the applicability of several metaheuristic optimization algorithms to power system challenges. Firstly, this paper reviews the fundamental concepts of metaheuristic optimization algorithms. Then, six problems regarding the power systems are presented and discussed. These problems are optimizing the power flow in transmission and distribution networks, optimizing the reactive power dispatching, optimizing the combined economic and emission dispatching, optimal Volt/Var controlling in the distribution power systems, and optimizing the size and placement of DGs. A list of several used metaheuristic optimization algorithms is presented and discussed. The relevant results approved the ability of the metaheuristic optimization algorithm to solve the power system problems effectively. This, in particular, explains their wide deployment in this field

    Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors

    Get PDF
    Cobalt oxide, nickel oxide and cobalt/nickel binary oxides were synthesised by electrodeposition. To fine tune composition of CoNi alloys, growth parameters including voltage, electrolyte pH/concentration and deposition time were varied. These produced nanomaterials were used as binder free electrodes in supercapacitor cells and tested using three electrode setup in 2 MKOH aqueous electrolyte. Cyclic voltammetry and galvanostatic charge/discharge were used at different scan rates (5–100 mV/s) and current densities (1–10 A/g) respectively to investigate the capacitive behaviour and measure the capacitance of active material. Electrochemical impedance spectroscopy was used to analyse the resistive/conductive behaviours of these electrodes in frequency range of 100 kHz to 0.01 Hz at applied voltage of 10 mV. Binary oxide electrode displayed superior electrochemical performance with the specific capacitance of 176 F/g at current density of 1 A/g. This hybrid electrode also displayed capacitance retention of over 83% after 5000 charge/discharge cycles. Cell displayed low solution resistance of 0.35 Ω along with good conductivity. The proposed facile approach to synthesise binder free blended metal electrodes can result in enhanced redox activity of pseudocapacitive materials. Consequently, fine tuning of these materials by controlling the cobalt and nickel contents can assist in broadening their applications in electrochemical energy storage in general and in supercapacitors in particular

    Two dimensional Cu based nanocomposite materials for direct urea fuel cell

    Get PDF
    In this work, Cu2O nanoparticles were successfully prepared onto the surface of two-dimensional graphitic carbon nitride (g-C3N4) by using a simple solution chemistry approach. An environment-friendly reducing agent, glucose, was used for the synthesis of Cu2O NPs onto the surface of g-C3N4 without using any surfactant or additives. The surface composition, crystalline structure, morphology, as well as other properties have been investigated using XPS, XRD, SEM, FTIR, FESEM, EDS, etc. The electrochemical measurements of the prepared materials demonstrated that Cu2O exhibited a weak oxidation activity towards urea, while g-C3N4 has no activity towards urea oxidation. The Cu2O supported on the surface of g-C3N4 (Cu2O-g-C3N4) demonstrated a significant activity towards urea oxidation that reached two times that of the unsupported one. The significant increase in the performance was related to the synergetic effect between the Cu2O and g-C3N4 support. The prepared composite materials demonstrated high stability towards urea oxidation as confirmed from the stable current discharge for around 3 h without any noticeable degradation performance

    Additive manufacturing for Proton Exchange Membrane (PEM) hydrogen technologies: merits, challenges, and prospects

    Get PDF
    © 2023 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.ijhydene.2023.07.033With the growing demand for green technologies, hydrogen energy devices, such as Proton Exchange Membrane (PEM) fuel cells and water electrolysers, have received accelerated developments. However, the materials and manufacturing cost of these technologies are still relatively expensive which impedes their widespread commercialization. Additive Manufacturing (AM), commonly termed 3D Printing (3DP), with its advanced capabilities, could be a potential pathway to solve the fabrication challenges of PEM parts. Herein, in this paper, the research studies on the novel AM fabrication methods of PEM components are thoroughly reviewed and analysed. The key performance properties, such as corrosion and hydrogen embrittlement resistance, of the additively manufactured materials in the PEM working environment are discussed to emphasise their reliability for the PEM systems. Additionally, the major challenges and required future developments of AM technologies to unlock their full potential for PEM fabrication are identified. This paper provides insights from the latest research developments on the significance of advanced manufacturing technologies in developing sustainable energy systems to address the global energy challenges and climate change effects.Published versio
    corecore