4 research outputs found

    Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications

    Get PDF
    A Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through the vessels. Presently, few flow phantoms are being used to be qualified for long-term utilize and storage with high physiological flow rate Doppler ultrasound. The main drawback of the two hydrogel materials items (Konjac (K) and carrageenan (C) (KC)) that it is not fit for long-term storage and easy to deteriorate. Thus, this research study focuses on the characterization and construction of a robust and elastic wall-less flow phantom with suitable acoustical properties of TMM. The mechanisms for the fabrication of a wall-less flow phantom utilizing a physically strong material such as K, C, and gelatin (bovine skin)-based TMM were explained. In addition, the clinical ultrasound (Hitachi Avius (HI)) system was used as the main instrument for data acquisition. Vessel mimicking material (VMM) with dimensions of 15.0 mm depth equal to those of human common carotid arteries (CCA) were obtained with pulsatile flow. The acoustical properties (speed of sound and attenuation were 1533±2 m/s and 0.2 dB/cm. MHz, respectively) of a new TMM were agreed with the IEC 61685 standards. Furthermore, the velocity percentages error were decreased with increase in the Doppler angle (the lowest % error (3%) it was at 53◦). The gelatin from bovine skin was a proper material to be added to KC to enhance the strength of TMM during for long-term utilize and storage of high-flow of blood mimicking Fluid (BMF). This wall-less flow phantom will be a suitable instrument for examining in-vitro research studies

    A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery

    No full text
    Medical Doppler ultrasound is usually utilized in the clinical adjusting to evaluate and estimate blood flow in both the major (large) and the minor (tiny) vessels of the body. The normal and abnormal sign waveforms can be shown by spectral Doppler technique. The sign waveform is individual to each vessel. Thus, it is significant for the operator and the clinicians to understand the normal and abnormal diagnostic in a spectral Doppler show. The aim of this review is to explain the physical principles behind the medical Doppler ultrasound, also, to use some of the mathematical formulas utilized in the medical Doppler ultrasound examination. Furthermore, we discussed the color and spectral flow model of Doppler ultrasound. Finally, we explained spectral Doppler sign waveforms to show both the normal and abnormal signs waveforms that are individual to the common carotid artery, because these signs are important for both the radiologist and sonographer to perceive both the normal and abnormal in a spectral Doppler show

    A review of suspension-Scattered particles used in blood-mimicking fluid for doppler ultrasound imaging

    No full text
    Doppler ultrasound imaging system description and calibration need blood-mimicking fluids (BMFs) for the test target of medical ultrasound diagnostic tools, with known interior features and acoustic and physical properties of this fluid (BMF). Physical and acoustical properties determined in the International Electrotechnical Commission (IEC) standard are specified as constant values, the materials used in the BMF preparation should have values similar to the IEC standard values. However, BMF is ready-made commercially from a field of medical usage, which may not be appropriate in the layout of ultrasound system or for an estimate of novel imaging mechanism. It is often eligible to have the capability to make sound properties and mimic blood arrangement for specific applications. In this review, sufficient BMF materials, liquids, and measures are described which have been generated by utilizing diverse operation mechanism and materials that have sculptured a range of biological systems

    Chemical items used for preparing tissue-mimicking material of wall-less flow phantom for doppler ultrasound imaging

    No full text
    The wall-less flow phantoms with recognized acoustic features (attenuation and speed of sound), interior properties, and dimensions of tissue were prepared, calibrated, and characterized of Doppler ultrasound scanning demands tissue-mimicking materials (TMMs). TMM phantoms are commercially available and ready-made for medical ultrasound applications. Furthermore, the commercial TMM phantoms are proper for ultrasound purpose or estimation of diagnostic imaging techniques according to the chemical materials used for its preparation. However, preparing a desirable TMM for wall-less flow phantom using a specific chemical material according to the specific applications is required for different flow. In this review, TMM and wall-less flow phantoms prepared using different chemical materials and methods were described. The chemical materials used in Doppler ultrasound TMM and wall-less flow phantoms fabricated over the previous decades were of high interest in this review
    corecore