3 research outputs found

    Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications.

    Get PDF
    Glyphosate is an herbicide widely used in agriculture but can present chronic toxicity in low concentrations. Artemia salina is a common bio-indicator of ecotoxicity; it was used herein as a model to evaluate the effect of highly diluted-succussed glyphosate (potentized glyphosate) in glyphosate-based herbicide (GBH) exposed living systems. Artemia salina cysts were kept in artificial seawater with 0.02% glyphosate (corresponding to 10% lethal concentration or LC10) under constant oxygenation, luminosity, and controlled temperature, to promote hatching in 48 h. Cysts were treated with 1% (v/v) potentized glyphosate in different dilution levels (Gly 6 cH, 30 cH, 200 cH) prepared the day before according to homeopathic techniques, using GBH from the same batch. Controls were unchallenged cysts, and cysts treated with succussed water or potentized vehicle. After 48 h, the number of born nauplii per 100 µL, nauplii vitality, and morphology were evaluated. The remaining seawater was used for physicochemical analyses using solvatochromic dyes. In a second set of experiments, Gly 6 cH treated cysts were observed under different degrees of salinity (50 to 100% seawater) and GBH concentrations (zero to LC 50); hatching and nauplii activity were recorded and analyzed using the ImageJ 1.52, plug-in Trackmate. The treatments were performed blind, and the codes were revealed after statistical analysis. Gly 6 cH increased nauplii vitality (p = 0.01) and improved the healthy/defective nauplii ratio (p = 0.005) but delayed hatching (p = 0.02). Overall, these results suggest Gly 6cH treatment promotes the emergence of the more GBH-resistant phenotype in the nauplii population. Also, Gly 6cH delays hatching, another useful survival mechanism in the presence of stress. Hatching arrest was most marked in 80% seawater when exposed to glyphosate at LC10. Water samples treated with Gly 6 cH showed specific interactions with solvatochromic dyes, mainly Coumarin 7, such that it appears to be a potential physicochemical marker for Gly 6 cH. In short, Gly 6 cH treatment appears to protect the Artemia salina population exposed to GBH at low concentrations

    Environmental Homeopathy: Homeopathic Potencies Regulate the Toxicity and Growth of Raphidiopsis raciborskii (cyanobacteria) and can be Tracked Physico-Chemically. Part 1: Biological Results.

    No full text
    INTRODUCTION  Cyanobacteria are microorganisms found in many parts of the world and several genera, such as Raphidiopsis raciborskii, are producers of cyanotoxins. Homeopathic potencies have been found to modulate toxicity in different biological models, and the present study endeavors to discover whether this might also be the case with cyanobacteria. OBJECTIVES  Our objective was to investigate the possible effects of homeopathic potencies on the resilience of Artemia franciscana (brine shrimp) embryos to saxitoxin (STX; cyanotoxin) and on controlling the growth of R. raciborskii in vitro. METHOD  A. franciscana cysts were cultivated in seawater in 96-well plates to evaluate the hatching rate and vitality, plus the gene expression of heat shock proteins (HSPs), after being challenged with R. raciborskii extract containing 2.5 µg/L of STX and treated with different homeopathic potencies. Untreated wells were used as controls ("base-line"). Potencies were chosen from a screening process based on seven selected homeopathic preparations according to the similitude of STX symptoms (Sulphur, Zincum metallicum, Nitric acidum, Plumbum metallicum, Mercurius solubilis, Phosphoric acidum, Isotherapic from R. raciborskii extract; all at 6cH, 30cH and 200cH). Cultures of R. raciborskii maintained in an artificial seawater medium were equally treated with screened homeopathic potencies selected from the same list but specifically for their growth control as a function of time. RESULTS  A 15% lower rate of hatching of A. franciscana cysts was observed after treatment with Nitric acidum 6cH in comparison with baseline (p = 0.05). A complete toxicity reversal was seen after treatment with Isotherapic 200cH, with a 23-fold increase of Hsp 26 gene expression (p = 0.023) and a 24-fold increase of p26 gene expression (p ≤ 0.001) in relation to baseline. Nitric acidum 200cH and Mercurius solubilis 30cH limited the exponential growth of cyanobacteria up to 95% and 85% respectively (p ≤ 0.003) in relation to baseline. Succussed water presented only a transitory 50% inhibition effect. CONCLUSION  Isotherapic 200cH improved A. franciscana bioresilience to STX; Nitric acidum 200cH and Mercurius solubilis 30cH showed the optimal performance on limiting R. raciborskii growth. The results point to the potential of homeopathic potencies to mitigate environmental problems related to water quality

    Environmental Homeopathy: Homeopathic Potencies Regulate the Growth and Toxicity of Raphidiopsis raciborskii (cyanobacteria) and Can be Tracked Physico-Chemically. Part 2: Physico-chemical Results.

    No full text
    INTRODUCTION  The control of cyanobacterial toxicity and growth by homeopathic potencies was described in Part 1 of this two-part report. Here, a parallel approach characterized the physico-chemical features of the potencies used and the liquid media treated with them, correlating these results with their respective biological effects. OBJECTIVES  Our objective was to establish if physico-chemical parameters can track homeopathic potencies in seawater or artificial seawater medium (ASM)-1 and to discover whether these parameters correlate with previously described biological effects. METHOD  Artemia franciscana (brine shrimp) cysts were cultivated in seawater challenged with Raphidiopsis raciborskii extract and treated with different homeopathic potencies chosen from a screening process. Cultures of R. raciborskii maintained in ASM-1 were also treated with previously screened homeopathic potencies, and their growth was monitored as a function of time. The physico-chemical properties of the treated media (seawater or ASM-1) were evaluated by their interaction with solvatochromic dyes and changes in pH, conductivity and temperature. RESULTS  Coumarin 7 was found to be a marker for Nitric acidum 6cH and Isotherapic (R. raciborskii extract) 200cH in seawater (analysis of variance [ANOVA], p = 0.0015). Nile red was found to be a marker for Nitric acidum 200cH and Mercurius solubilis 30cH in ASM-1 (ANOVA, p ≤ 0.001). An increase in pH of ASM-1 and endothermic effects were observed after these treatments (two-way ANOVA, p = 0.0001). Seawater and ASM-1 to which potencies had been added were also subjected to a constant unidirectional 2,400 Gauss static magnetic field and found to have enhanced effects on the solvatochromic dyes tested. CONCLUSION  Homeopathic potencies were specifically traceable in aqueous media using solvatochromic dyes, especially when the samples were subjected to a magnetic field. Results from monitoring other physical parameters, such as pH and temperature, were less specific in relation to potency tracking. However, potency-induced endothermic effects might provide valuable thermodynamic data relating to the nature of potencies
    corecore