17 research outputs found

    TRIM-NHL protein, NHL-2, modulates cell fate choices in the C. elegans germ line

    Get PDF
    Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals

    The NEMP family supports metazoan fertility and nuclear envelope stiffness

    Get PDF
    Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) i

    Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry

    Get PDF
    Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways i

    Innexin function dictates the spatial relationship between distal somatic cells in the Caenorhabditis elegans gonad without impacting the germline stem cell pool

    Get PDF
    Gap-junctional signaling mediates myriad cellular interactions in metazoans. Yet, how gap junctions control the positioning of cells in organs is not well understood. Innexins compose gap junctions in invertebrates and affect organ architecture. Here, we investigate the roles of gap-junctions in controlling distal somatic gonad architecture and its relationship to underlying germline stem cells i

    The NEMP family supports metazoan fertility and nuclear envelope stiffness.

    Get PDF
    Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility

    Up-regulation of BAALC/MN1/MLLT11/EVI1

    No full text

    GLP-1 Notch-LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1.

    Get PDF
    Stem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self-renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate, employing the sequence-specific DNA binding protein LAG-1 to implement the transcriptional response. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region

    Does an Adjustable-Loop Device Loosen following ACL Reconstruction with a Hamstring Graft? A Retrospective Study with a Follow-Up of Two Years

    No full text
    Arthroscopic anatomic anterior cruciate ligament reconstruction (ACLR) is the gold standard treatment for an ACL tear and requires the use of fixed or adjustable-loop devices to fix a femoral-side graft. Although the adjustable mechanism is designed to provide one-way tensioning, there is a concern that the adjustable loop will loosen and lengthen during cyclic loads, creating graft laxity. The present paper is a retrospective study of patients who underwent ACLR with the fixation of a hamstring graft with an adjustable loop on the femoral side from November 2016 to October 2018. The knee’s functional outcome was evaluated using an International Knee Documentation Committee (IKDC) score, Lysholm score, Lachman test, and pivot shift test. The patients were assessed preoperatively and finally postoperatively after two years of surgery. Thirty-two patients were analyzed. Significant improvement was obtained in the final clinical outcome of the patients. Twenty-seven patients (84.4%) were Lachman negative, and twenty-eight patients (87.5%) were pivot shift test negative, the mean Lysholm score was 96.91, and the IKDC score was 91.47 (p < 0.001). There was no infection, graft failure, or flexion restriction. Arthroscopic ACLR with an adjustable-loop suspensory device is a successful fixation method for femoral-side graft fixation and offers a similar functional outcome as with fixed-loop devices

    “Losing the Brakes”—Suppressed Inhibitors Triggering Uncontrolled <i>Wnt</i>/<i>ß-Catenin</i> Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia

    No full text
    Dysregulated Wnt/β-catenin signal transduction is implicated in initiation, propagation, and poor prognosis in AML. Epigenetic inactivation is central to Wnt/β-catenin hyperactivity, and Wnt/β-catenin inhibitors are being investigated as targeted therapy. Dysregulated Wnt/β-catenin signaling has also been linked to accelerated aging. Since AML is a disease of old age (>60 yrs), we hypothesized age-related differential activity of Wnt/β-catenin signaling in AML patients. We probed Wnt/β-catenin expression in a series of AML in the elderly (>60 yrs) and compared it to a cohort of pediatric AML (n = 101) were evaluated for key Wnt/β-catenin molecule expression utilizing the NanoString platform. Differential expression of significance was defined as >2.5-fold difference (p 60 yrs) were identified in this cohort. Normal bone marrows (n = 10) were employed as controls. Wnt/β-catenin target genes (MYC, MYB, and RUNX1) showed upregulation, while Wnt/β-catenin inhibitors (CXXR, DKK1-4, SFRP1-4, SOST, and WIFI) were suppressed in elderly AML compared to pediatric AML and controls. Our data denote that suppressed inhibitor expression (through mutation or hypermethylation) is an additional contributing factor in Wnt/β-catenin hyperactivity in elderly AML, thus supporting Wnt/β-catenin inhibitors as potential targeted therapy
    corecore