6 research outputs found

    A Brief Comparative Study on Removal of Toxic Dyes by Different Types of Clay

    Get PDF
    Increasing amount of organic dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost bio adsorbents. Different techniques have been used for the treatment of wastewater containing toxic dyes such as: biological degradation, oxidation, adsorption, reverse osmosis, and membrane filtration. Among all these processes mentioned, adsorption with low cost adsorbents has been recognized as one of the cost effective and efficient techniques for treatment of industrial wastewater from organic and inorganic pollutants. Clays as material adsorbents for the removal of various toxic dyes from aqueous solutions as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. This chapter presents a comprehensive account of the techniques used for the removal of industrial cationic and anionic dyes from water during the last 10 years with special reference to the adsorption by using low cost materials in decontamination processes. Effects of different adsorption parameters on the performance of clays as adsorbents have been also discussed. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed

    Derives du benzimidazole a finalite therapeutique. Analogues du HOECHST 33258 et des NICE-NU (nitroimidazole chloroethyl nitrosourees)

    No full text
    SIGLEINIST T 77417 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Factor design methodology for modelling and optimization of carcinogenic acid dye adsorption onto Moroccan prickly pear cactus peel

    No full text
    In this study, the modelling and optimization studies of the carcinogenic acid dye sorption from aqueous solutions were carried out using the Factor Design Methodology. This methodology provides a predictive model of the response in the range of variables studied and determines the optimum conditions for the best performance. The sorption of acid dye AB113 on Moroccan prickly pear cactus peel (MPPCP) was chosen as a case study of a typical removal process. Minitab17 software was used to study the effects of adsorption parameters, including initial dye concentration, solution pH, adsorbent dose, contact time, and temperature. Analysis of variance (ANOVA) was used to evaluate the experimental results obtained. The studied parameters at two levels (-1 and +1) were coded as X1, X2, X3, X4 and X5, consecutively. The optimum conditions obtained for the adsorption of AB113 dye were: 1 g for the mass of MPPCP, 6 for the initial solution pH, 180 min for the contact time and 20 mg/L for the initial dye concentration. The results show that the model is well adapted to the experimental data, indicating the suitability of the model and the success of the factorial design methodology in optimizing the adsorption conditions
    corecore