11 research outputs found

    Microstructure, Crystallographic Texture, and Mechanical Properties of Friction Stir Welded Mild Steel for Shipbuilding Applications

    No full text
    In the current work, mild steel used in shipbuilding applications was friction-stir-welded (FSWed) with the aim of investigating the microstructure and mechanical properties of the FSWed joints. Mild steel of 5 mm thickness was friction-stir-welded at a constant tool rotation rate of 500 rpm and two different welding speeds of 20 mm/min and 50 mm/min and 3° tool tilt angle. The microstructure of the joints was investigated using optical and scanning electron microscopes. Additionally, the grain structure and crystallographic texture of the nugget (NG) zone of the FSWed joints was investigated using electron backscattering diffraction (EBSD). Furthermore, the mechanical properties were investigated using both tensile testing and hardness testing. The microstructure of the low-welding-speed joint was found to consist of fine-grain ferrite and bainite (acicular ferrite) with an average grain size of 3 µm, which indicates that the temperature experienced above A1, where a ferrite and austenite mixture is formed, and upon cooling, the austenite transformed into bainite. The joint produced using high welding speed resulted in a microstructure consisting mainly of polygonal ferrite and pearlite. This could be due to the temperature far below A1 experienced during FSW. In terms of joint efficiency expressed in terms of relative ultimate tensile, the stress of the joint to the base material was found to be around 92% for the low-speed joint and 83% for the high-welding-speed joint. A reduction in welding was attributed to the microstructure, as well as the microtunnel defect formed near the advancing side of the joint. The tensile strain was preserved at 18% for low welding speed and increased to 24% for the high welding speed. This can be attributed to the NG zone microstructural constituents. In terms of crystallographic texture, it is dominated by a simple shear texture, with increased intensity achieved by increasing the welding speed. In both joints, the hardness was found to be significantly increased in the NG zone of the joints, with a greater increase in the case of the low-welding-speed joint. This hardness increase is mainly attributed to the fine-grained structure formed after FSW

    Bobbin Tool Friction Stir Welding of Aluminum: Parameters Optimization Using Taguchi Experimental Design

    No full text
    This work aims to optimize the performance evaluation characteristics such as the temperature at the weld center of the lap joint (Tw), the tensile shear load (TSL), and the hardness using an experimental design experiment for bobbin tool friction stir welding (BT-FSW) of AA1050 lap joints. BT-FSW is characterized by a fully penetrated pin and double-sided shoulder that promote symmetrical solid-state welds. This study contributes to improving the quality of 10 mm thick lap joints and addressing challenges to obtaining a sound weld deprived of any defects. Taguchi L9 orthogonal array (OA) experimental design was performed. Three different pin shapes (cylindrical, triangular, and square) and three levels of welding travel speeds of 200, 400, and 600 mm/min were selected as input controllable process parameters at a constant tool rotation speed of 600 rpm. A travel speed of 200 mm/min with square pin geometry significantly improves the TSL of the joint up to 6491 N. However, the hardness characteristic is optimized by using 600 mm/min travel speed and a cylindrical tool pin. The minimum temperature in the weld joint can be obtained using 600 mm/min or more with triangular pin geometry. From ANOVA results, it was seen that the BT-FSW of AA 1050 thick lap joints performance in terms of TLS and Tw were greatly influenced by travel speed; however, the tool shape influences the hardness more. For the validation of the models, BT-FSW experiments have been carried out for AA1050 using the applied processing parameters. Furthermore, regression models were developed to predict the Tw, TSL, and hardness. The calculated performance properties from the mathematical models were in an acceptable range compared to the measured experimental values

    Microstructure, Crystallographic Texture, and Mechanical Properties of Friction Stir Welded Mild Steel for Shipbuilding Applications

    No full text
    In the current work, mild steel used in shipbuilding applications was friction-stir-welded (FSWed) with the aim of investigating the microstructure and mechanical properties of the FSWed joints. Mild steel of 5 mm thickness was friction-stir-welded at a constant tool rotation rate of 500 rpm and two different welding speeds of 20 mm/min and 50 mm/min and 3° tool tilt angle. The microstructure of the joints was investigated using optical and scanning electron microscopes. Additionally, the grain structure and crystallographic texture of the nugget (NG) zone of the FSWed joints was investigated using electron backscattering diffraction (EBSD). Furthermore, the mechanical properties were investigated using both tensile testing and hardness testing. The microstructure of the low-welding-speed joint was found to consist of fine-grain ferrite and bainite (acicular ferrite) with an average grain size of 3 µm, which indicates that the temperature experienced above A1, where a ferrite and austenite mixture is formed, and upon cooling, the austenite transformed into bainite. The joint produced using high welding speed resulted in a microstructure consisting mainly of polygonal ferrite and pearlite. This could be due to the temperature far below A1 experienced during FSW. In terms of joint efficiency expressed in terms of relative ultimate tensile, the stress of the joint to the base material was found to be around 92% for the low-speed joint and 83% for the high-welding-speed joint. A reduction in welding was attributed to the microstructure, as well as the microtunnel defect formed near the advancing side of the joint. The tensile strain was preserved at 18% for low welding speed and increased to 24% for the high welding speed. This can be attributed to the NG zone microstructural constituents. In terms of crystallographic texture, it is dominated by a simple shear texture, with increased intensity achieved by increasing the welding speed. In both joints, the hardness was found to be significantly increased in the NG zone of the joints, with a greater increase in the case of the low-welding-speed joint. This hardness increase is mainly attributed to the fine-grained structure formed after FSW

    Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology

    No full text
    The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, square, and cylindrical) at a constant tool rotation speed (RS) of 600 rpm on processing 8 mm thickness AA1050. The developed mathematical model optimizes the effect of the applied BT-FSP parameters on machine torque, processing zone (PZ) temperature, surface roughness, hardness values, and ultimate tensile strength (UTS). The experimental design is based on the Face Central Composite Design (FCCD), using linear and quadratic polynomial equations to develop the mathematical models. The results show that the proposed model adequately predicts the responses within the processing parameters, and the pin geometry is the most influential parameter during the BT-FSP of AA1050. The analysis of variance exhibit that the developed mathematical models can effectively predict the values of the machine torque, PZ temperature, surface roughness, hardness, and UTS with a confidence level of over 95% for the AA1050 BT-FSP. The optimization process shows that the optimum parameters to attain the highest mechanical properties in terms of hardness and tensile strength at the lowest surface roughness and machine torque are travel speed (TS) of 200 mm/min using cylindrical (Cy) pin geometry at the constant RS of 600 rpm. The PZ temperature of the processed specimens decreased with increasing TS at different pin geometries. Meanwhile, the surface roughness of the processed passes and machine torque increased with increasing the TS at different pin geometries. Increasing TS from 100 to 300 mm/min increases the hardness values of the processed materials using different pin geometries. The highest UTS of 79 MPa for the processed specimens was attained at the TS of 200 mm/min and RS of 600 rpm using the Cy pin geometry

    Bobbin Tool Friction Stir Welding of Aluminum Using Different Tool Pin Geometries: Mathematical Models for the Heat Generation

    No full text
    In this work, three mathematical models for the heat generation during bobbin tool friction stir welding (BT-FSW) of aluminum using three tool pin geometries have been proposed. The models have utilized and updated the available models for the heat generation during the conventional tool friction stir welding (CT-FSW). For the validation of the models, BT-FSW experiments have been carried out for aluminum alloy AA1050 using three different pin geometries (cylindrical, square, and triangular), at different welding speeds of 200, 400, 600, 800, and 1000 mm/min and a constant tool rotation speed of 600 rpm. The welding temperatures during BT-FSW have been measured to be compared with that calculated from the models at the same parameters. It has been found that the calculated welding temperatures from the models and that measured during BT-FSW are in good agreement at all the investigated welding speeds especially in case of the square and cylindrical pins, proving the validity of the developed models for the predication of the heat generation as well as the welding temperatures. This will allow proper designing of the BT-FSW parameters and avoiding the conditions that can deteriorate the joint quality and properties

    Effect of post-weld heat-treatment and solid-state thermomechanical treatment on the properties of the AA6082 MIG welded joints

    No full text
    Abstract Post-weld heat treatment (PWHT) and solid-state thermomechanical treatment (TMT) via friction stir processing (FSP) have been shown to enhance the mechanical properties of aluminum alloys. The current work investigates the effects of PWHT and TMT on the microstructure and mechanical performance of AA6082-T6 welded butt joints welded using the MIG process. The 5 mm thick AA 6082-T6 plates were joined in butt configuration using MIG welding with ER 5356 filler wire, 120 A current, 0.3 mm/s weld speed, and argon shielding gas at 15 L/min flow rate. PWHT was performed on the MIG welds per the T6 temper procedure. TMT was implemented via FSP using a pinless tool rotating at 800 rpm and traversing speed at 200 mm/min with a 3° tilt angle. Microstructural analysis, hardness mapping, tensile testing, and fracture surface evaluation were utilized to characterize the as-welded, PWHT, and TMT samples. The results demonstrate that both PWHT and TMT significantly refine and homogenize the microstructures of the welded joints. However, the TMT samples displayed superior hardness and tensile strength compared to the as-welded and PWHT conditions. The TMT-processed welds achieved approximately 99% joint efficiency versus only 69% and 85% for the as-welded and PWHT samples. In summary, PWHT and especially TMT via FSP are effective at enhancing the mechanical properties of MIG welded AA6082-T6

    Microstructure and Mechanical Properties of AZ91 Rein-Forced with High Volume Fraction of Oriented Short Carbon Fibers

    No full text
    In this study, AZ91/23 vol.% short carbon fiber composite was produced by a squeeze casting technique using a cylindrical pre-form of treated carbon fibers, in which the fibers are randomly oriented in the horizontal plane. Cylindrical specimens (height = 9 mm and diameter = 6 mm) were machined from the as-cast AZ91 matrix and its composite. The full behavior of the produced composite was studied through the test specimens machined in two directions, namely parallel to the reinforced plane (in the radial direction of the cast cylinder) and normal to the reinforced plane (in the axial direction of the cast composite). The microstructures of the produced composite specimens were investigated using SEM equipped with EDS analysis. Density, hardness, compressive, and wear behavior were also investigated. For comparison, the AZ91 matrix was evaluated as a reference. The microstructure of the produced AZ91 matrix alloy and its composite revealed dense materials without casting defects. Both composite specimens show improvement in hardness, compressive strength, and wear properties over the AZ91 matrix. The compressive and wear properties are more fiber orientation-dependent than the hardness results. The parallel composite specimen depicts the highest compressive properties in terms of yield compressive strength (311 MPa) and ultimate compressive strength (419 MPa), compared to that shown by the AZ91 matrix and the normal composite specimen. This improvement in compressive strength was at the expense of ductility. The parallel composite specimen shows the lowest ductility (R = 3.8%), compared to that given by the normal composite specimen (R = 7.1) and the AZ91 matrix alloy (R = 13.6). The wear testing results showed that at the highest wear load of 5 N, the material weight loss of the parallel composite specimen decreases by 44% and 64% compared to the AZ91 matrix and the normal composite specimen, respectively

    Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers

    No full text
    Light-weight metal matrix composites, especially magnesium-based composites, have recently become more widespread for high-efficiency applications, including aerospace, automobile, defense, and telecommunication industries. The squeeze cast AZ91 base material (AZ91-BM) and its composites having 23 vol.% short carbon fibers were fabricated and investigated. The composite specimens were machined normal to the reinforced plane (Composite-N) and parallel to the reinforced plane (Composite-P). All the as-casted materials were subjected to different tests, such as hardness, compression, and wear testing, evaluating the mechanical properties. Dry wear tests were performed using a pin-on-disk machine at room temperature under different applied wear loads (1–5 N) and different sliding distances (0.4461×104–3.12×104 m). The microstructures and worn surfaces of the fabricated AZ91-BM and the two composite specimens were investigated using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) advanced analysis system. The wear debris was collected and investigated also under the SEM. The results showed significant improvement in hardness, compressive strength, and wear resistance of the composite specimens (Composite-N and Composite-P) over the AZ91-BM. The compressive strength and wear resistance are more fibers orientation sensitive than the hardness results. When the fiber orientation is parallel to the sliding direction (Composite-N), the weight loss is somewhat lower than that of the fiber orientation perpendicular to the sliding direction (Composite-P) at a constant wear load of 2 N and the sliding distances of 0.4461×104, 1.34×104 , and 2.23×104 m. In contrast, the weight loss of Composite-P is lower than Composite-N, especially at the highest sliding distance of 3.12×104 m due to the continuous feeding of graphite lubricant film and the higher compressive strength. Plastic deformation, oxidation, and abrasive wear are the dominant wear mechanisms of AZ91-BM; in contrast, abrasive and delamination wear are mainly the wear mechanisms of the two composites under the applied testing conditions

    Bobbin Tool Friction Stir Welding of Aluminum Thick Lap Joints: Effect of Process Parameters on Temperature Distribution and Joints’ Properties

    No full text
    Bobbin tool friction stir welding (BT-FSW) is characterized by a fully penetrated pin and double-sided shoulder that promote symmetrical solid-state joints. However, control of the processing parameters to obtain defect-free thick lap joints is still difficult and needs more effort. In this study, the BT-FSW process was used to produce 10 mm AA1050-H14 similar lap joints. A newly designed bobbin tool (BT) with three different pin geometries (cylindrical, square, and triangular) and concave shoulders profile was designed, manufactured, and applied to produce the Al alloy lap joints. The experiments were carried out at a constant tool rotation speed of 600 rpm and a wide range of various welding travel speeds of 200, 400, 600, 800, and 1000 mm/min. The generated temperature during the BT-FSW process was recorded and analyzed at the joints’ center line, and at both advancing and retreating sides. Visual inspection, macrostructures, hardness, and tensile properties were investigated. The fracture surfaces after tensile testing were also examined. The results showed that the pin geometry and travel speed are considered the most important controlling parameters in BT-FSW thick lap joints. The square (Sq) pin geometry gives the highest BT-FSW stir zone temperature compared to the other two pins, cylindrical (Cy) and triangular (Tr), whereas the Tr pin gives the lowest stir zone temperature at all applied travel speeds from 200 to 1000 mm/min. Furthermore, the temperature along the lap joints decreased with increasing the welding speed, and the maximum temperature of 380 °C was obtained at the lowest travel speed of 200 mm/min with applying Sq pin geometry. The temperature at the advancing side (AS) was higher than that at the retreating side (RS) by around 20 °C. Defect-free welds were produced using a bobbin tool with Cy and Sq pin geometries at all the travel welding speeds investigated. BT-FSW at a travel speed of 200 mm/min leads to the highest tensile shear properties, in the case of using the Sq pin. The hardness profiles showed a significant effect for both the tool pin geometry and the welding speed, whereas the width of the softened region is reduced dramatically with increasing the welding speed and using the triangular pin

    Effective Range of FSSW Parameters for High Load-Carrying Capacity of Dissimilar Steel A283M-C/Brass CuZn40 Joints

    No full text
    In the current study, a 2 mm thick low-carbon steel sheet (A283M—Grade C) was joined with a brass sheet (CuZn40) of 1 mm thickness using friction stir spot welding (FSSW). Different welding parameters including rotational speeds of 1000, 1250, and 1500 rpm, and dwell times of 5, 10, 20, and 30 s were applied to explore the effective range of parameters to have FSSW joints with high load-carrying capacity. The joint quality of the friction stir spot-welded (FSSWed) dissimilar materials was evaluated via visual examination, tensile lap shear test, hardness test, and macro- and microstructural investigation using SEM. Moreover, EDS analysis was applied to examine the mixing at the interfaces of the dissimilar materials. Heat input calculation for the FSSW of steel–brass was found to be linearly proportional with the number of revolutions per spot joint, with maximum heat input obtained of 11 kJ at the number of revolutions of 500. The temperature measurement during FSSW showed agreement with the heat input dependence on the number of revolution. However, at the same revolutions of 500, it was found that the higher rotation speed of 1500 rpm resulted in higher temperature of 583 °C compared to 535 °C at rotation speed of 1000 rpm. This implies the significant effect for the rotation speed in the increase of temperature. The macro investigations of the friction stir spot-welded joints transverse sections showed sound joints at the different investigated parameters with significant joint ligament between the steel and brass. FSSW of steel/brass joints with a number of revolutions ranging between 250 to 500 revolutions per spot at appropriate tool speed range (1000–1500 rpm) produces joints with high load-carrying capacity from 4 kN to 7.5 kN. The hardness showed an increase in the carbon steel (lower sheet) with maximum of 248 HV and an increase of brass hardness at mixed interface between brass and steel with significant reduction in the stir zone hardness. Microstructural investigation of the joint zone showed mechanical mixing between steel and brass with the steel extruded from the lower sheet into the upper brass sheet
    corecore