5 research outputs found

    Methylmercury varies more than one order of magnitude in commercial European rice

    Get PDF
    P.M. thanks the Royal Thai Government for funding and C.C.B. thanks the School of Natural and Computing Science and PS Analytical for funding.Peer reviewedPostprin

    Exopolysaccharide from Bacillus mojavensis DAS10-1; Production and Characterization

    No full text
    Among group of bacteria screened for exopolymer production, Bacillus species DAS10-1 producing exopolysaccharide was detected. The bacterial strain was isolated from indoor air of Dammam slaughterhouse, in KSA and identified based on 16S rRNA gene sequencing. Phylogenetic analysis revealed its closeness to Bacillus mojavensis. In comparison with static culture, shake culture recorded 27.9-fold increase. FT-IR Spectroscopy showed sharp bands at 3415.6, 2942.1, 1646.5, 1183.1 and 1111.8 cm-1 that are typical for carbohydrate. Furthermore, strong absorbance in 1200-950 cm”1 indicated polysaccharide nature of the polymer. Result of GPC indicated that weight average (Mw), number average (Mn) and size average molecular weight (Mz) for EPS polymer were 1151Da, 987Da and 1302Da, respectively. Maximum EPS yield (5.62 mg/mg) was reported during growth on M3 medium supplemented with C:N ratio of 4:1 for sucrose and ammonium sulfate, respectively. Supplementation of medium with trace element solution-I resulted in remarkable decrease in EPS yield (1.62 mg/mg). Maximum EPS production (63.02 mg/mg) was recorded during growth on synthetic medium M3 in presence of 20 g/L sucrose. Successful use of the agro-industrial carbon source date syrup or DEPS rather than sucrose might significantly lower process economy and increase promises for production of EPS on industrial scale

    Fabrication of Effective Nanohybrids Based on Organic Species, Polyvinyl Alcohol and Carbon Nanotubes in Addition to Nanolayers for Removing Heavy Metals from Water under Severe Conditions

    No full text
    Industrial water has a dual problem because of its strong acidic characteristics and the presence of heavy metals. Removing heavy metals from water in these severe conditions has special requirements. For this problem, an economic method was used for removing iron (Fe), copper (Cu), chromium (Cr), nickel (Ni) and manganese (Mn) with extremely acidic characteristics from water. This method depends on the preparation of nanohybrids through host–guest interactions based on nanolayered structures, organic species (stearic acid), polyvinyl alcohol (PVA) and carbon nanotubes (CNTs). The formation of nanohybrids was confirmed using different techniques through the expansion of the interlayered spacing of the nanolayered structure from 0.76 nm to 1.60 nm, 1.40 nm and 1.06 nm. This nano-spacing is suitable for trapping and confining the different kinds of heavy metal. The experimental results indicated that the prepared nanohybrid was more effective than GreensandPlus, which is used on the market for purifying water. The high activity of the nanohybrid is obvious in the removal of both copper and nickel because the GreensandPlus was completely inactive for these heavy metals under severe conditions. Finally, these experimental results introduce new promising materials for purifying industrial water that can work under severe conditions

    Dual-Functional Nanostructures for Purification of Water in Severe Conditions from Heavy Metals and <i>E. coli</i> Bacteria

    No full text
    Because of industrial water, many groundwater sources and other water bodies have a strongly acidic medium. Increased bacterial resistance against multiple antibiotics is one of the main challenges for the scientific society, especially those commonly found in wastewater. Special requirements and materials are needed to work with these severe conditions and treat this kind of water. In this trend, nanolayered structures were prepared and modified in different ways to obtain an optimum material for removing different kinds of heavy metals from water in severe conditions, alongside purifying water from a Gram-negative bacteria (E. coli), which is an indication for fecal pollution. An ultrasonic technique effectively achieved this dual target by producing nanolayered structures looking like nanotapes with dimensions of 25 nm. The maximum removal percentages of the heavy metals studied (i.e., iron (Fe), copper (Cu), chromium (Cr), nickel (Ni), and manganese (Mn)) were 85%, 79%, 68%, 63%, and 61%, respectively for one prepared structure. In addition, this nanostructure showed higher antimicrobial activity against the most common coliform bacterium, E. coli (inhibition zone up to 18.5 mm). This study introduces dual-functional material for removing different kinds of heavy metals from water in severe conditions and for treating wastewater for Gram-negative bacteria (E. coli)

    Endovascular Treatment of Acute Portal Vein Thrombosis Using Ultrasound- Accelerated Catheter-Directed Thrombolysis

    No full text
    Abstract We report a case of extensive acute portal vein thrombosis (PVT) presenting with severe diffuse abdominal pain and impending small bowel infarction. The patient was successfully treated with ultrasound-accelerated catheter-directed thrombolysis (EKOS endowave system; Covidien, Mansfield, Massachusetts), which resulted in prompt recanalization of his portal vein (PV) and its tributaries. The patient eventually had ischemic stricture that necessitated bowel resection. However, we believe that our technique was successful in rapidly restoring the patency of the PV and its tributaries, and therefore, avoiding a life-threatening complication of more extensive bowel infarction. To our knowledge, the use of ultrasound-accelerated thrombolysis in treatment of PVT has not been previously described in the literature
    corecore