3 research outputs found

    Fluorescence Spectrometric Determination of Drugs Containing α-Methylene Sulfone/Sulfonamide Functional Groups Using N1-Methylnicotinamide Chloride as a Fluorogenic Agent

    Get PDF
    A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing α-methylene sulfone/sulfonamide functional groups using N1-methylnicotinamide chloride (NMNCl) as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM) (1), tinidazole (2), rofecoxib (3), and nimesulide (4) in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 μg/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 μg/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods

    Efficacy and durability of bovine virus diarrhea (BVD) virus killed vaccine adjuvanted with monolaurin.

    No full text
    The bovine virus diarrhea virus (BVDV) causes reproductive, enteric, and respiratory diseases. Vaccination is essential in increasing herd resistance to BVDV spread. The selection of an adjuvant is an important factor in the success of the vaccination process. Monolaurin or glycerol monolaurate is a safe compound with an immunomodulatory effect. This study aimed to evaluate the efficacy of monolaurin as a novel adjuvant. This was examined through the preparation of an inactivated BVDV (NADL strain) vaccine adjuvanted with different concentrations of monolaurin and compared with the registered available locally prepared polyvalent vaccine (Pneumo-4) containing BVD (NADL strain), BoHV-1 (Abou Hammad strain), BPI3 (strain 45), and BRSV (strain 375L), and adjuvanted with aluminum hydroxide gel. The inactivated BVDV vaccine was prepared using three concentrations, 0.5%, 1%, and 2%, from monolaurin as adjuvants. A potency test was performed on five groups of animals. The first group, which did not receive vaccination, served as a control group while three other groups were vaccinated using the prepared vaccines. The fifth group received the Pneumo-4 vaccine. Vaccination response was monitored by measuring viral neutralizing antibodies using enzyme-linked immunosorbent assay (ELISA). It was found that the BVD inactivated vaccine with 1% and 2% monolaurin elicited higher neutralizing antibodies that have longer-lasting effects (nine months) with no reaction at the injection site in comparison to the commercial vaccine adjuvanted by aluminum hydroxide gel
    corecore