14 research outputs found

    Susceptible exposed infectious recovered-machine learning for COVID-19 prediction in Saudi Arabia

    Get PDF
    Susceptible exposed infectious recovered (SEIR) is among the epidemiological models used in forecasting the spread of disease in large populations. SEIR is a fitting model for coronavirus disease (COVID-19) spread prediction. Somehow, in its original form, SEIR could not measure the impact of lockdowns. So, in the SEIR equations system utilized in this study, a variable was included to evaluate the impact of varying levels of social distance on the transmission of COVID-19. Additionally, we applied artificial intelligence utilizing the deep neural network machine learning (ML) technique. On the initial spread data for Saudi Arabia that were available up to June 25th, 2021, this improved SEIR model was used. The study shows possible infection to around 3.1 million persons without lockdown in Saudi Arabia at the peak of spread, which lasts for about 3 months beginning from the lockdown date (March 21st). On the other hand, the Kingdom's current partial lockdown policy was estimated to cut the estimated number of infections to 0.5 million over nine months. The data shows that stricter lockdowns may successfully flatten the COVID-19 graph curve in Saudi Arabia. We successfully predicted the COVID-19 epidemic's peaks and sizes using our modified deep neural network (DNN) and SEIR model

    Induced Wide Nematic Phase by Seven-Ring Supramolecular H-Bonded Systems: Experimental and Computational Evaluation

    No full text
    New seven-ring systems of dipyridine derivative liquid crystalline 2:1 supramolecular H-bonded complexes were formed between 4-n-alkoxyphenylazo benzoic acids and 4-(2-(pyridin-4-yl)diazenyl)phenyl nicotinate. Mesomorphic behaviors of the prepared complexes were investigated using a combination of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Fermi bands attributed to the presence of intermolecular H-bond interactions were confirmed by FT–IR spectroscopy. All prepared complexes possessed an enantiotropic nematic phase with a broad temperature nematogenic range. Phases were confirmed by miscibility with a standard nematic (N) compound. A comparison was constructed to investigate the influence of the incorporation of the azophenyl moiety on the mesomeric behavior of corresponding five-membered complexes. It was found that the present complexes observed induced a wide nematic phase with relatively higher temperature ranges than the five aromatic systems. Density functional theory (DFT) suggested the nonlinear geometry of the formed complex. The results of the DFT explained the nematic mesophase formation. Moreover, the π–π stacking of the aromatic moiety in the phenylazo acid plays an effective role in the mesomorphic thermal stability. The energy difference between the frontier molecular orbitals, HOMO (highest occupied) and LUMO (lowest occupied), and the molecular electrostatic potential (MEP) of the prepared complexes were estimated by DFT calculations. The results were used to illustrate the observed nematic phase for all H-bonded supramolecular complexes. Finally, photophysical studies were discussed which were carried out by UV spectroscopy connected to a hot stage

    New Symmetrical U- and Wavy-Shaped Supramolecular H-Bonded Systems; Geometrical and Mesomorphic Approaches

    No full text
    New mesomorphic symmetrical 2:1 supramolecular H-bonded complexes of seven phenyl rings were prepared between 4-n-alkoxyphenylazobenzoic acids and 4-(2-(pyridin-3-yl)diazenyl)phenyl nicotinate. Mesomorphic studies of the prepared complexes were investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Fermi bands of the formed H-bonded interactions were confirmed by FT-IR spectroscopy. Geometrical parameters for all complexes were performed using the density functional theory (DFT) calculations method. Theoretical results revealed that the prepared H-bonded complexes are in non-linear geometry with U-shaped and wavy-shaped geometrical structures; however, the greater linearity of the wavy-shaped compounds could be the reason for their stability with respect to the U-shaped conformer. Moreover, the stable, wavy shape of supramolecular H-bonded complexes (SMHBCs) has been used to illustrate mesomeric behavior in terms of the molecular interaction. The experimental mesomorphic investigations revealed that all complexes possess enantiotropic smectic C phase. Phases were confirmed by miscibility with a standard smectic C (SmC) compound. A comparison was constructed to investigate the effect of incorporating azophenyl moiety into the mesomeric behavior of the corresponding five-membered complexes. It was found that the addition of the extra phenylazo group to the acid moiety has a great increment of the mesophase stability (TC) values with respect to the monotropic SmC phase of the five aromatic systems to the high stable enantiotropic SmC mesophase

    New Rod-Like H-Bonded Assembly Systems: Mesomorphic and Geometrical Aspects

    No full text
    Experimental and geometrical approaches of new systems of mesomorphic 1:1 supramolecular H-bonded complexes (SMHBCs) of five rings are discussed. The H-bonding between 4-alkoxyphenylimino benzoic acids (An, as proton acceptor) and 4-(4′–pyridylazophenyl) 4′′-alkoxybenzoates (Bm, as proton donor) were investigated. Mesomorphic behaviors were analyzed by differential scanning calorimetry (DSC) and mesophase textures were identified by polarized light microscopy (POM). H-bonded assembly was established by FT-IR spectroscopic measurements via Fermi band discussion. Thermal and theoretical factors were predicted for all synthesized complexes by density functional theory (DFT) predictions. The results revealed that all prepared complexes were monomorphic, with a broad range of smectic A phases with a high thermal stability of enantiotropic mesophase. Furthermore, DFT stimulations illustrated the experimental results in terms of the influence of the chain length either of the acid or the base component. Many parameters, such as the calculated stability, the dipole moment and the polarizability of the H-bonded complexes, illustrate how these parameters work together to enhance the smectic mesophases with the obtained stability and range

    Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments

    No full text
    In this research work, nanofibrous hybrids are manufactured, characterized, and assessed as active antiviral and antibacterial membranes. In more detail, both polyvinyl alcohol (PVA) and thermoplastic polyurethane (TPU) nanofibrous (NF) membranes and their composites with embedded silver nanoparticles (Ag NPs) are manufactured by an electrospinning process. Their morphological structures have been investigated by a scanning electron microscope (SEM) which revealed a homogenous distribution and almost beads-free fibers in all manufactured samples. Characterization with spectroscopic tools has been performed and proved the successful manufacturing of Ag-incorporated PVA and TPU hybrid nanofibers. The crystalline phase of the nanofibers has been determined using an X-ray diffractometer (XRD) whose patterns showed their crystalline nature at an angle value (2θ) of less than 20°. Subsequent screening of both antiviral and antibacterial potential activities of developed nanohybrid membranes has been explored against different viruses, including SARS-Cov-2 and some bacterial strains. As a novel approach, the current work highlights potential effects of several polymeric hybrids on antiviral and antibacterial activities particularly against SARS-Cov-2. Moreover, two types of polymers have been tested and compared; PVA of excellent biodegradable and hydrophilic properties, and TPU of excellent mechanical, super elasticity, hydrophobicity, and durability properties. Such extreme polymers can serve a wide range of applications such as PPE, filtration, wound healing, etc. Consequently, assessment of their antiviral/antibacterial activities, as host matrices for Ag NPs, is needed for different medical applications. Our results showed that TPU-Ag was more effective than PVA-Ag as HIV-1 antiviral nanohybrid as well as in deactivating spike proteins of SARS-Cov-2. Both TPU-Ag and PVA-Ag nanofibrous membranes were found to have superior antimicrobial performance by increasing Ag concentration from 2 to 4 wt.%. Additionally, the developed membranes showed acceptable physical and mechanical properties along with both antiviral and antibacterial activities, which can enable them to be used as a promising functional layer in Personal Protective Equipment (PPE) such as (surgical gowns, gloves, overshoes, hair caps, etc.). Therefore, the developed functional membranes can support the decrease of both coronavirus spread and bacterial contamination, particularly among healthcare professionals within their workplace settings

    Being 40 or younger is an independent risk factor for relapse in operable breast cancer patients: The Saudi Arabia experience

    No full text
    Abstract Background Breast cancer in young Saudi women is a crucial problem. According to the 2002 annual report of Saudi National Cancer Registry, breast cancers that developed before the age of 40 comprise 26.4% of all female breast cancers comparing to 6.5% in the USA. Breast cancer in young patients is often associated with a poorer prognosis, but there has been a scarcity of published data in the Middle East population. Methods Total of 867 breast cancer patients seen at King Faisal Specialist Hospital & Research Centre (KFSH&RC) between 1986 and 2002 were reviewed. Patients were divided in two age groups: ≤ 40 years and above 40 years. The clinicopathological characteristics and treatment outcomes were compared between younger and older age groups. Results Median age at presentation was 45 years. A total of 288 (33.2%) patients were aged ≤ 40 years. Hormone receptors were positive in 69% of patients 40 and 78.2% of patients above 40 (p = 0.009). There was a significantly higher incidence of grade III tumor in younger patients compared to older patients (p = 0.0006). Stage, tumor size, lymphatic/vascular invasion, number of nodes and axillary lymph node status, did not differ significantly between the two age groups. Younger patients had a greater probability of recurrence at all time periods (p = 0.035). Young age had a negative impact on survival of patients with positive axillary lymph nodes (p = 0.030) but not on survival of patients with negative lymph nodes (p = 0.695). Stage, tumor size, nodal status and hormonal receptors had negative impact on survival. Adjuvant chemotherapy was administered to 87.9% of younger and 65.6% of older patients (p p Conclusion Young age (≤ 40) is an independent risk factor for relapse in operable Saudi breast cancer patients. The fundamental biology of young age breast cancer patients needs to be elucidated.</p

    The B7-H1 (PD-L1)T Lymphocyte-Inhibitory Molecule Is Expressed in Breast Cancer Patients with Infiltrating Ductal Carcinoma: Correlation with Important High-Risk Prognostic Factors

    No full text
    B7-H1 molecule increases the apoptosis of tumor-reactive T lymphocytes and reduces their immunogenicity. Breast cancer is the second most common cause of mortality after lung cancer. Direct evidence linking B7-H1 with cancer has been shown in several malignancies; however, its expression in breast cancer has not been investigated. We used immunohistochemistry to investigate the expression of the B7-H1 molecule in 44 breast cancer specimens and to study its correlation with patients' clinicopathological parameters. The expression of B7-H1 was shown in 22 of 44 patients and was not restricted to the tumor epithelium (15 of 44, 34% in tumor cells), but was also expressed by tumor-infiltrating lymphocytes (TIL; 18 of 44, 41%). Interestingly, intratumor expression of B7-H1 was significantly associated with histologic grade III-negative (P = .012), estrogen receptor-negative (P = .036), and progesterone receptor-negative (P = .040) patients. In addition, the expression of B7-H1 in TIL was associated with large tumor size (P = .042), histologic grade III (P = .015), positivity of Her2/neu status (P = .019), and severe tumor lymphocyte infiltration (P = .001). Taken together, these data suggest that B7-H1 may be an important risk factor in breast cancer patients and may represent a potential immunotherapeutic target using monoclonal antibody against the B7-H1 molecule

    Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria Evaluation

    No full text
    Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the metal oxide concentration up to 83% reduction rate by using TPU/ZnO 4% nanofibers against K. pneumoniae strain 10. The bacterial growth was completely eradicated after 8 and 16 h incubation with TPU/ZnO and TPU/CuO nanofibers, respectively. The nanofibers SEM study reveals the adsorption of the bacterial cells on the metal oxides nanofibers surface which led to cell lysis and releasing of their content. Finally, in vitro study against Spike S-protein from SARS-CoV-2 was also evaluated to investigate the potent effectiveness of the proposed nanofibers in the virus deactivation. The results showed that the metal oxide concentration is an effective factor in the antiviral activity due to the observed pattern of increasing the antibacterial and antiviral activity by increasing the metal oxide concentration; however, TPU/ZnO nanofibers showed a potent antiviral activity in relation to TPU/CuO
    corecore