2 research outputs found

    Early Forecasting Hydrological and Agricultural Droughts in the Bouregreg Basin Using a Machine Learning Approach

    No full text
    Water supply for drinking and agricultural purposes in semi-arid regions is confronted with severe drought risks, which impact socioeconomic development. However, early forecasting of drought indices is crucial in water resource management to implement mitigation measures against its consequences. In this study, we attempt to develop an integrated approach to forecast the agricultural and hydrological drought in a semi-arid zone to ensure sustainable agropastoral activities at the watershed scale and drinking water supply at the reservoir scale. To that end, we used machine learning algorithms to forecast the annual SPEI and we embedded it into the hydrological drought by implementing a correlation between the reservoir’s annual inflow and the annual SPEI. The results showed that starting from December we can forecast the annual SPEI and so the annual reservoir inflow with an NSE ranges from 0.62 to 0.99 during the validation process. The proposed approach allows the decision makers not only to manage agricultural drought in order to ensure pastoral activities “sustainability at watershed scale” but also to manage hydrological drought at a reservoir scale

    Spatiotemporal Assessment and Correction of Gridded Precipitation Products in North Western Morocco

    No full text
    Accurate and spatially distributed precipitation data are fundamental to effective water resource management. In Morocco, as in other arid and semi-arid regions, precipitation exhibits significant spatial and temporal variability. Indeed, there is an intra- and inter-annual variability and the northwest is rainier than the rest of the country. In the Bouregreg watershed, this irregularity, along with a sparse gauge network, poses a major challenge for water resource management. In this context, remote sensing data could provide a viable alternative. This study aims precisely to evaluate the performance of four gridded daily precipitation products: three IMERG-V06 datasets (GPM-F, GPM-L, and GPM-E) and a reanalysis product (ERA5). The evaluation is conducted using 11 rain gauge stations over a 20-year period (2000–2020) on various temporal scales (daily, monthly, seasonal, and annual) using a pixel-to-point approach, employing different classification and regression metrics of machine learning. According to the findings, the GPM products showed high accuracy with a low margin of error in terms of bias, RMSE, and MAE. However, it was observed that ERA5 outperformed the GPM products in identifying spatial precipitation patterns and demonstrated a stronger correlation. The evaluation results also showed that the gridded precipitation products performed better during the summer months for seasonal assessment, with relatively lower accuracy and higher biases during rainy months. Furthermore, these gridded products showed excellent performance in capturing different precipitation intensities, with the highest accuracy observed for light rain. This is particularly important for arid and semi-arid regions where most precipitation falls under the low-intensity category. Although gridded precipitation estimates provide global coverage at high spatiotemporal resolutions, their accuracy is currently insufficient and would require improvement. To address this, we employed an artificial neural network (ANN) model for bias correction and enhancing raw precipitation estimates from the GPM-F product. The results indicated a slight increase in the correlation coefficient and a significant reduction in biases, RMSE, and MAE. Consequently, this research currently supports the applicability of GPM-F data in North Western Morocco
    corecore