4 research outputs found
Optical Band Gap Tuning, DFT Understandings, and Photocatalysis Performance of ZnO Nanoparticle-Doped Fe Compounds
Iron-doped Zinc oxide nanoparticles were produced by the sol-gel combustion method. This study aims to see how iron doping affects the structural, optical, and photocatalytic characteristics of ZnO composites. XRD examined all samples to detect the structural properties and proved that all active materials are a single hexagonal phase. The morphology and particle size were investigated by TEM. Computational Density functional theory (DFT) calculation of the band structure, density of state, and charge distributions for ZnO were investigated in comparison with ZnO dope iron. We reported the application results of ZnO doped Fe for Methylene blue dye removal under photocatalytic degradation effect. The iron concentrations affect the active material’s band gap, producing higher photocatalytic performance. The acquired results could be employed to enhance the photocatalytic properties of ZnO
Exploring the Potential of Zirconium-89 in Diagnostic Radiopharmaceutical Applications: An Analytical Investigation
This study highlights the use of 89Zr-oxalate in diagnostic applications with the help of WinAct and IDAC2.1 software. It presents the biodistribution of the drug in various organs and tissues, including bone, blood, muscle, liver, lung, spleen, kidneys, inflammations, and tumors, and analyzes the maximum amount of nuclear transformation per Bq intake for each organ. The retention time of the maximum nuclear transformation and the absorbed doses of the drug in various organs and tissues are also examined. Data from clinical and laboratory studies on radiopharmaceuticals are used to estimate the coefficients of transition. The accumulation and excretion of the radiopharmaceutical in the organs is assumed to follow an exponential law. The coefficients of transition from the organs to the blood and vice versa are estimated using a combination of statistical programs and digitized data from the literature. WinAct and IDAC 2.1 software are used to calculate the distribution of the radiopharmaceutical in the human body and to estimate the absorbed doses in organs and tissues. The results of this study can provide valuable information for the biokinetic modeling of wide-spectrum diagnostic radiopharmaceuticals. The results show that 89Zr-oxalate has a high affinity for bones and a relatively low impact on healthy organs, making it helpful in targeting bone metastases. This study provides valuable information for further research on the development of this drug for potential clinical applications
Lead-Free Ternary Glass for Radiation Protection: Composition and Performance Evaluation for Solar Cell Coverage
Solar cells in superstrate arrangement need a protective cover glass as one of its main components. The effectiveness of these cells is determined by the cover glass’s low weight, radiation resistance, optical clarity, and structural integrity. Damage to the cell covers brought on by exposure to UV irradiation and energetic radiation is thought to be the root cause of the ongoing issue of a reduction in the amount of electricity that can be generated by solar panels installed on spacecraft. Lead-free glasses made of xBi2O3–(40 − x)CaO-60P2O5 (x = 5, 10, 15, 20, 25, and 30 mol%) were created using the usual approach of melting at a high temperature. The amorphous nature of the glass samples was confirmed using X-ray diffraction. At energies of 81, 238, 356, 662, 911, 1173, 1332, and 2614 keV, the impact of various chemical compositions on gamma shielding in a phospho-bismuth glass structure was measured. The evaluation of gamma shielding revealed that the results of the mass attenuation coefficient of glasses increase as the Bi2O3 content increases but decrease as the photon energy increases. As a result of the study conducted on the radiation-deflecting properties of ternary glass, a lead-free low-melting phosphate glass that exhibited outstanding overall performance was developed, and the optimal composition of a glass sample was identified. The 60P2O5–30Bi2O3–10CaO glass combination is a viable option for use in radiation shielding that does not include lead