2 research outputs found

    An uncoupled multiphase approach towards modeling ice crystals in jet engines

    No full text
    A recent series of high altitude turbofan engine malfunctions, characterized by flameout and sudden power losses have been reported in recent years. The source of these incidents has been hypothesized to be due to the presence of ice crystals at high altitudes. Ice crystals have been shown to have ballistic trajectories and consequently enter the core engine flow, without getting centrifuged out towards the engine bypass as droplets do. The crystals may melt as they move downstream to higher temperatures in successive stages, or hit a heated surface. The wetted surface may then act as an interface for further crystal impingement, which locally reduces the temperature and could lead to an ice accretion on the components. Ice can accrete to dangerously high levels, causing compressor surge due to blockage of the primary flowpath, vibrational instabilities due to load imbalances of ice on rotating components, mechanical damage of components downstream due to large shed ice fragments, or performance losses if ice enters the combustor, causing a decreased burner efficiency and an eventual flame-out.In order to provide a numerical tool to analyze such situations, FENSAP-ICE has been extended to model mixed-phase flows that combine air, water and ice crystals, and the related ice accretion. DROP3D has been generalized to calculate particle impingement, concentration, and field velocities in an uncoupled approach that neglects any phase change by assuming both ice crystals and supercooled droplets are in thermodynamic equilibrium. ICE3D then accounts for the contribution of ice crystals that stick and melt on an existing water-film and promote ice accretion.The extended ice crystal impingement and ice accretion model has been validated against test data from Cox and Co. and National Research Council icing tests conducted on a NACA0012 airfoil and unheated non-rotating cylinder respectively. The tests show a consistent agreement with respect to experimental profiles in terms of capturing the overall shape, although some of the ice profiles were conservative since they over-predicted the amount of ice accreted. The experimental observations suggest that ice crystals cause splashing of an existing film, and erosion effects when they impact an iced surface, and cause an overall loss in the amount of ice, as well as a general streamlining of the ice profile. This has not been taken into account in the present numerical model. The overall predictions in comparison with other numerical models, however, have improved and are a promising step towards simulating ice-shedding characteristics in a turbomachine.De nombreux incidents liés à des problèmes de fonctionnement de moteurs d'avions ont été observés ces dernières années, tous caractérisés par l'extinction du moteur ou une perte soudaine de sa puissance. Ces incidents à haute altitude pourraient être causés par des cristaux de glace qui, de par leur trajectoire balistique, entrent directement dans le coeur du moteur sans être déviés par la force centrifuge vers le pontage, comme pour les gouttelettes d'eau. Les cristaux peuvent alors fondre lorsqu'ils rencontrent des températures plus élevées dans le moteur ou lorsqu'ils heurtent une surface chaude. Une telle surface humide pourrait devenir un noyau de cristallisation en réduisant localement la température, favorisant ainsi la formation de glace sur les composants internes du moteur. Cette accumulation présente un danger lorsqu'elle réduit l'espace libre pour l'écoulement d'air, engendrant un phénomène de pompage du compresseur. Elle peut aussi causer des instabilités vibrationnelles lorsqu'elle n'est pas uniforme sur les composantes rotatives, causant ainsi un débalancement de charge. De l'impact des tessons de glace qui se décollent de la surface peut endommager l'équipement mécanique en aval, et causer des pertes de performance liées à la présence de glace dans la chambre de combustion, engendrant une chute de l'efficacité du brûleur et éventuellement l'extinction de la flamme.Afin de fournir un outil numérique pour l'analyse de telles situations, des modifications ont été apportées à FENSAP-ICE pour lui permettre de simuler l'écoulement de phases hétérogènes (air, eau, cristaux de glace) et l'accumulation de glace sur la surface. DROP3D a été généralisé afin de calculer la concentration et les champs de vitesses d'une particule de façon non couplée, en supposant que les cristaux de glace et les gouttelettes d'eau surgelées coexistent en équilibre thermodynamique. ICE3D à été modifié pour tenir compte des cristaux de glace qui se collent sur une couche d'eau existante et qui fondent, favorisant le phénomène d'accrétion de glace.Les modifications au modèle de simulation d'accrétion de glace pour les cristaux de glace ont été validées à l'aide des données de Cox & Co., ainsi que des essais du Conseil National de Recherche du Canada, portant sur un profil NACA0012 et un cylindre sans rotation ni chauffage. Les résultats de ces essais démontrent que le modèle de simulation est généralement capable de prédire les formes de glace, sauf pour quelques profils qui ont donné des résultats conservateurs avec une plus importante accumulation de glace. Cet excès de glace peut être expliqué par des observations expérimentales qui suggèrent que l'impact des cristaux de glace incidents avec la surface cause des éclaboussures dans la couche d'eau existante, et que l'écoulement autour de la glace provoque l'érosion de celle-ci, produisant ainsi une surface plus lisse et plus réfractaire à l'accumulation. Ces effets n'ont pas été considérés dans ce modèle de simulation numérique. En général, les prédictions s'améliorent lorsqu'on les compare avec d'autres modèles et représentent un résultat prometteur pour la simulation des caractéristiques de délestage de glace dans un turboréacteur
    corecore