3 research outputs found

    DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction with an Optimizable Feature Grid

    Full text link
    We propose DynamicSurf, a model-free neural implicit surface reconstruction method for high-fidelity 3D modelling of non-rigid surfaces from monocular RGB-D video. To cope with the lack of multi-view cues in monocular sequences of deforming surfaces, one of the most challenging settings for 3D reconstruction, DynamicSurf exploits depth, surface normals, and RGB losses to improve reconstruction fidelity and optimisation time. DynamicSurf learns a neural deformation field that maps a canonical representation of the surface geometry to the current frame. We depart from current neural non-rigid surface reconstruction models by designing the canonical representation as a learned feature grid which leads to faster and more accurate surface reconstruction than competing approaches that use a single MLP. We demonstrate DynamicSurf on public datasets and show that it can optimize sequences of varying frames with 6×6\times speedup over pure MLP-based approaches while achieving comparable results to the state-of-the-art methods. Project is available at https://mirgahney.github.io//DynamicSurf.io/

    GNPM: Geometric-Aware Neural Parametric Models

    Get PDF
    We propose Geometric Neural Parametric Models (GNPM), a learned parametric model that takes into account the local structure of data to learn disentangled shape and pose latent spaces of 4D dynamics, using a geometric-aware architecture on point clouds. Temporally consistent 3D deformations are estimated without the need for dense correspondences at training time, by exploiting cycle consistency. Besides its ability to learn dense correspondences, GNPMs also enable latent-space manipulations such as interpolation and shape/pose transfer. We evaluate GNPMs on various datasets of clothed humans, and show that it achieves comparable performance to state-of-the-art methods that require dense correspondences during training.Comment: 10 pages, 8 figure
    corecore